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Foreword

This thesis aims to micro-found in�ation persistence in a New Keynesian DSGE frame-

work by recurring to time-dependent pricing mechanism. In particular, we assume that

the probability to adjust a price is not exogenous, as in Calvo speci�cation, but it is

positive function of the time spent since last price reset: according to Sheedy (2007),

this method is implemented by using an increasing hazard function.

In Chapter 1 we present a small review of several methods proposed in literature

to make the Phillips curve able to account for in�ation persistence.

Chapter 2 and Chapter 3 are devoted to a positive analysis. In particular, in Chap-

ter 2, titled �Wage time-dependent adjustment�, we micro-found, via time-dependent

pricing relying, in turn, on the use of positive hazard functions, a Time-dependent

New Keynesian Wage Phillips curve (TDWPC henceforth) embedded of a backward

component and exhibiting intrinsic inertia. We then estimate this TDWPC by GMM

in order to investigate the hazard shape properties for wages and what is the number

of leads and lags components statistically signi�cant for our TDWPC speci�cation.

In Chapter 3, �Price and wage in�ation intrinsic inertia�, we develop a stan-

dard small-scale New Keynesian DSGEmodel characterized by time-dependent Phillips

curves both for prices and wages. We then estimate this model by Bayesian techniques

and show that a positive hazard function emerges for both the TDPCs; therefore, we

successfully test the robustness of our result to a change of policy regime, given by the

Great Moderation. Hence, we compare the empirical performance of our model, mea-

sured by the log-marginal likelihood, with that of a model where in�ation persistence is

achieved by some form of indexation to past in�ation: we found that our model clearly

outperforms the alternatives considered as, in our speci�cation, we are able to capture
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the hump-shaped response of wage in�ation to a cost-push shock, coherently with the

VAR evidence.

In Chapter 4, titled �Welfare and optimal monetary policy�, we move to a nor-

mative analysis, evaluating how the distortions present in our model, due to di¤erent

hazard rates, in�uence the social welfare and how they a¤ect the gains deriving from

a commitment.
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Chapter 1

Modeling in�ation inertia: a review

1.1 Introduction

New Keynesian dynamic stochastic general equilibrium models (NK DSGE henceforth)

are now the workhorse for macroeconomic modelling. They are widely used in the

�eld of macroeconomics in order to analyze the e¤ects of monetary and �scal policy,

evaluating the impact of several frictions (e.g. hiring costs in the labor market, credit

crunch), accounting for business cycle �uctuations, de�ning the policy rule followed

by a Central Bank to implement the optimal monetary policy, analyzing the in�ation

process. Such class of models, in their easier speci�cation, are simply de�ned by three

equations: a demand schedule (called dynamic IS) derived from the Euler equation for

the consumption, which de�nes the negative relation between the output level and the

real interest rate; a supply curve, the New Keynesian Phillips curve (NKPC from now

on), which describes the dynamics of the in�ation process; �nally, the model is closed

by the monetary rule implemented by the Central Bank, that usually takes the form

of a Taylor rule.1

Further developments on macroeconomic and econometric research allowed us to

evaluate the empirical performance of these models, showing that they are able to

replicate quite well the main macroeconomic �gures; on the other hand, models relying

1For a wider analysis on this kind of rules see Taylor (1993, 2001).
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on Real Business Cycle theory fail to account some important macroeconomic facts,

especially the well-known productivity-employment puzzle.2 This empirical di¤erence

is due to the hypotheses at the basis of these two approaches: whereas RBC models are

developed in a framework characterized by price �exibility and perfect competition, NK

DSGE models assume a market structure with monopolistic competition and nominal

rigidity under the form of sluggish adjustment of prices.

The stickiness of prices is usually introduced through the Calvo (1983) mechanism:

under this framework in each period a proportion of �rms, �, cannot change their price,

whereas the remaining fraction (1� �) can reoptimize. The �rm able to adjust its price

sets it in order to maximize the expected discounted �ow of future pro�ts: the maxi-

mization takes in account also future pro�ts since the �rm knows that the price set will

remain �xed for more than one period. Thus, Calvo pricing model involves infrequent

price change based on an exogenous probability to reset a price: this probability, equal

to (1� �), follows an exogenous Poisson process and the price duration is given by

1= (1� �). Under this pricing method it is possible to derive a NKPC that takes the

following form:3

b�pt = �Etb�pt+1 + �cmct (1)

where b�pt denotes the price in�ation, cmct is the real marginal cost, � is the stochastic
discount factor and � = (1��)(1���)

�
measures the elasticity of in�ation to real marginal

cost. As described previously, this relation tells us that in�ation positively depends

on the expectation on future in�ation and on the real marginal cost. Alternatively,

(1) can be rewritten considering the output gap instead of real marginal cost: in fact,

2For a discussion over this issue see Galí (1999) and Basu et al. (2006).
3The hat over a variable denotes the log-deviation from the steady state.
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these two variables are proportional and this allows us to relate in�ation directly to

the output.

A problem deriving with this NKPC speci�cation is that it lacks of backward terms,

so it totally fails to account for the intrinsic persistence component of in�ation. Look-

ing at the macro data, the in�ation series exhibits a high degree of autocorrelation,

denoting the necessity to add a lagged term to (1), treating in this way in�ation as an

auto-regressive process.

In last years a large stream of macroeconomic research has been devoted to de-

velop mechanisms to add inertia in the NKPC and able to �t the data better than (1).

These models di¤er among them mainly for the assumption on which relies the pric-

ing decision. Time by time have been proposed pricing models based on indexation,

sticky information, real wage rigidity, positive steady-state in�ation, time-dependent

and state-dependent price adjustment

All these models try to provide micro-foundations in order to obtain a NKPC

embedding at least a lagged term, being so able to account for the inertia observed in

the data. Each approach will be analyzed more in depth in next sections.

1.2 Models with indexation

The earlier contribution to endow the NKPC of a backward term is made by introducing

indexation to past in�ation. In this way it is possible to derive a Phillips curve where

current in�ation exhibits inertial behavior since it depends also on past in�ation. A

shortcoming of this approach is that indexation to past in�ation is not always veri�ed

in the micro data (Fabiani et al., 2005; Dhyne et al., 2005), in particular since the

Great Moderation. Indexation is introduced by assuming a fraction of rule of thumb

3



�rms in resetting their price (Galí and Gertler, 1999) or through dynamic indexation

to past in�ation (Christiano et al., 2005).

1.2.1 Galí-Gertler (1999) setting

In their seminal work Galí and Gertler (1999) derived a hybrid Phillips curve charac-

terized by both forward and backward terms for in�ation. Their framework is similar

to Calvo, but they depart from the latter with regard to the behaviour of the �rms

able to reoptimize their price. As in Calvo a fraction of �rms, �, cannot reoptimize

their price and continue to charge the price used in the previous period. The remaining

fraction, (1� �), is composed by the �rms able to change their price. These �rms are

divided into two groups: a forward-looking fraction, (1� !), is able to reset the price

and this is set in order to maximize the expected �ow of pro�ts; on the other side,

the remaining fraction, !, is composed by backward-looking �rms that will index their

price to past in�ation. Thus, the aggregate price level evolves in the following way:

pt = (1� �) p�t + �pt�1 (2)

The evolution of p�t is then given by:

p�t = (1� !) pft + !pbt (3)

where pft is the price set by forward-looking �rms and pbt denotes the price set by

backward-looking �rms. The price pft is �xed in the same way of the traditional Calvo
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model, whereas pbt is set according to:

pbt = p�t�1 + �pt�1 (4)

This approach allows us to derive a hybrid NKPC speci�ed as follows:

b�pt = 
f�Etb�pt+1 + 
bb�pt�1 + �cmct (5)

where 
f =
�

�+![1��(1��)] , 
b =
!

�+![1��(1��)] and � =
(1��)(1���)(1�!)
�+![1��(1��)] .

In this speci�cation ! is the degree of indexation to past in�ation, whereas 
b

represents the degree of backwardness of in�ation. Moreover, Galí and Gertler (1999)

provide an estimation of (5) performed via GMM: they obtain that the degree of

backwardness is quite signi�cant, but the forward component is still dominant (about

0:75, against a value of 0:25 for the backward term).4

1.2.2 Christiano et al. (2005) dynamic indexation

Another contribution to this issue comes from Christiano et al. (2005). Their approach

is a variant of Calvo where the only di¤erence is that they assume automatic indexation

to past in�ation for the share of �rms not able to change their price. The aggregate

price level evolves according to:

pt = (1� �) p�t + �!�pt�1pt�1 (6)

where p�t is the reset price chosen by a �rm in order to maximize his expected �ow

4The reader is referred to Galí and Gertler (1999) for the complete results and robustness analysis
about this NKPC speci�cation.
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of pro�ts and the parameter ! 2 (0; 1) measures the degree of indexation to past

in�ation.5 The corresponding Phillips curve is:

b�pt = �

1 + !�
Etb�pt+1 + !

1 + !�
b�pt�1 + {cmct (7)

where { = (1��)(1���)
�(1+!�)

. This framework implies that each period there will be a price

change, due either to price reoptimization or to dynamic indexation: this is at odds

with microeconomic evidence since �rms can take their price �xed also for long periods.

1.3 Sticky information models: Mankiw and Reis (2002)

A further possible explanation to in�ation persistence is given by Mankiw and Reis

(2002) in their sticky information model: they assume that information, and not price,

is sticky and borrow Calvo mechanism to micro-found the sluggish adjustment in in-

formation. Under this framework there is an exogenous probability that a fraction �

of the �rms receive new information about the state of the economy and, as a conse-

quence, it is able to reoptimize his price, �xing a plan for its future prices; this pricing

model is an extension of Fischer (1977), as prices are predetermined. The remaining

fraction (1� �) does not receive any information and leaves its price unchanged. At

time t the optimal price of a representative �rm is:

p�t = pt + �yt (8)

The �rm is concerned about its optimal price that is set accordingly with the

5In their original speci�cation Christiano et al. (2005) assume that the price is fully indexed to
past in�ation (i.e. ! = 1):
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variation in the output gap. A �rm that received last information i periods ago updates

its price in the following way:

xt = Et�ip
�
t (9)

Therefore the aggregate price level is:

pt = �
1P
i=0

(1� �)i xt (10)

By combining equations (8), (9) and (10) emerges a Phillips curve with the following

form:

�pt =

�
��

1� �

�
yt + �

1P
i=0

(1� �)iEt�1�i [�t + � (yt � yt�1)] (11)

Here, in�ation depends on output gap and past expectations of current in�ation

and output gap growth. Since these variables are predetermined, they introduce an

inertial component in the Phillips curve.

1.4 Contracting models

This class of models concentrates on real wage rigidity and its implication on the

Phillips curve speci�cation. We shall analyze two contributions: Fuhrer and Moore

(1995) and Blanchard and Galí (2007).

1.4.1 Fuhrer and Moore (1995)

Fuhrer and Moore (1995) depart from Taylor contracting model (1980) assuming that

agents care about relative real wage. The nominal wage contract proposed by Fuhrer
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and Moore has the following form:

wt � pt =
1

2
[wt�1 � pt�1 + Et (wt+1 � pt+1)] + �yt (12)

where wt is the wage contract negotiated at time t and yt is the excess of demand.

Under this perspective the price level is de�ned as:

pt =
1

2
(wt + wt�1) (13)

Then, by substituting (12) in (13) and rearranging we get:

b�pt = 1

2

�b�pt�1 + Etb�pt+1�+ � (yt + yt�1) (14)

It is clear as (14) is able to account for the persistence own of the in�ation process,

since appears also a backward term for in�ation. Di¤erently from Galí and Gertler

(1999) and Christiano et al. (2005) this model has a further form of inertia given due

to the presence of a lagged term for the output. Moreover, the weight attached to past

in�ation is higher than the one estimated by Galí and Gertler (1999).

1.4.2 Blanchard and Galí (2007)

Blanchard and Galí (2007) show that introducing real wage rigidities it is possible to

derive a Phillips curve able to account for in�ation inertia. This approach relies on the

assumption that real wage evolves as follows:

!t = �!t�1 + (1� �)mrst (15)
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where � measures the degree of real wage rigidity. Thus, the Phillips curve is:

b�pt = �Etb�pt+1 + �

1� �L
x2t (16)

where L is the lag operator, � = [(1� �) (1� ��)] ��1 , and x2t is a linear combination

of the output and output growth depending on the extent of real wage rigidity; x2t is

given by:

x2t = (1� �)�1 [(1� �) (1 + 
) yt + �� (yt � yt�1)] (17)

where (1� �) represents the labor share and 
 is the labor supply elasticity. The key

parameter for the persistence in this model is � : the higher is � , the more will account

the inertial component in (17).

1.5 Trend in�ation: Ascari and Ropele (2007)

An interesting innovation is the one introduced by Ascari (2004) with regard to the

deterministic steady-state around we take the log-linearization. His point of departure

is that, in post-war period, for all the advanced economies we observe positive in�ation

rates and, moreover, many Central Banks adopt a policy rule based on in�ation tar-

geting on slight, but positive, in�ation rate (usually around 2%). Thus, the common

practice to log-linearize NK DSGE models around a steady-state characterized by zero

in�ation is unrealistic. His suggestion is to take the log-linearization around a positive

steady-state in�ation; under this modi�cation the Phillips curve is characterized by

intrinsic inertia, deriving from the behaviour of the relative price dispersion measure.

According to Ascari and Ropele (2007), the �Trend in�ation� approach leads to a
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Phillips curve that has the following form:

b�pt = �Etb�pt+1+� [(1 + �n) byt + �nbst]+ �� (� � 1) (1� �)

�
Et

h
("� 1) b�pt+1 + b�t+1i (18)

where � is the steady-state of in�ation, bst is the relative price dispersion, � = (1� �) (1� ��) =�,

" is the elasticity of substitution between goods, �n is the inverse of Frisch elasticity

and b�t is an auxiliary variable de�ned as follows:
b�t = ��Et

h
("� 1) b�pt+1 + b�t+1i (19)

The relative price dispersion evolves as follows:

bst = �b�pt + ��"bst�1 (20)

where � is a convolution of deep parameters and trend in�ation; the variable bst plays
a pivotal role since it is characterized by a backward term which arises in a Phillips

curve embedded by intrinsic persistence. As we can see from (18), the steady-state

level of trend in�ation has an impact on the determination of current in�ation.

Some things are worth of mention: �rst, if we consider � = 1, corresponding to

zero in�ation steady-state, equation (18) reduces to the standard NKPC in equation

(1). In addition, taking a log-linearization around a positive in�ation steady-state

has non-negligible e¤ects on the dynamics of the model: the short-run properties of

the model depend on the value of trend in�ation assumed for the log-linearization.

Moreover, a log-linear approximation around a non-zero steady-state in�ation rate has

implication also for the long-run properties of the model: the steady-state value of
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the output gap is a¤ected by the level of trend in�ation assumed. Finally, as showed

in Ascari and Ropele (2007), the steady-state in�ation level in�uences also the deter-

minacy/indeterminacy regions: they �nd that the Taylor principle seems to be very

sensible to trend in�ation and the determinacy region tends to shrink when a positive

level of steady-state in�ation is assumed.

1.6 Time-dependent vs. State-dependent models

Two further classes of pricing models are the time-dependent (TDP) and state-dependent

(SDP): they di¤erentiate one another for the assumptions on the mechanism that give

rise to price change.

In time-dependent models the price adjustment depends on the time spent since

last price reset: these models usually recur to a hazard function to micro-found this

mechanism. Therefore, the probability to change price could be endogenous, being

positive or negative function of the time (depending on the hazard shape assumed) or

it can be exogenous, i.e. it is always the same regardless the time spent from last reset

(e.g. Calvo). Under TDP approach, prices can be reoptimized each period, as in the

standard model, or can be predetermined for multi periods (Taylor, 1980).

On the other side we have state-dependent models: here, pricing decisions are

taken in order to face a shock that alters the state of the economy. Thus, price change

happens whether the bene�t deriving from setting a new price o¤sets the menu cost

supported by a �rm. Therefore, the timing of the price change depends endogenously

on the underlying economic conditions. A shortcoming of SDP models, for which they

are rarely used in literature, is their complex analytic tractability.
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Chapter 2

Wage time-dependent adjustment

2.1 Introduction

In this chapter we depart from Calvo hypothesis of random probability of wage adjust-

ment by assuming that there is a positive relation between the time spent from last

wage reset and the probability to change a wage. In particular we follow the approach

designed by Sheedy (2007) who uses a non-constant hazard function to micro-found

the price adjustment process. The idea is that this process is time-dependent: a hazard

function with positive slope can well approximate this mechanism. A price adjustment

with a non-constant hazard function is considered by many papers, including Taylor

(1980), Goodfriend and King (1997), Dotsey et al. (1999), Wolman (1999), Guerrieri

(2001, 2002), Mash (2004). These models are based on state or time dependent assump-

tions and focus on price dynamics. We follow Sheedy (2007), based on time-dependent

pricing and positive hazard functions, because his approach seems to be more able to

�t the macroeconomic �gures, in particular to explain in�ation persistence. Di¤erently

from him, we focus on wage setting. Speci�cally, the attractiveness of time-dependent

models with positive hazard functions is that they can provide micro-foundations for a

Phillips curve exhibiting �intrinsic persistence�,6 which is a stylized economic fact hard

6Following Fuhrer (2011) by �intrinsic persistence�we refer to the inertia that does not depend on
the real activity, but it is proper of the in�ation process, whereas we refer to �inherited persistence�
as the inertia inherited by the driving process, i.e. output gap or real marginal cost.
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to formalize in New Keynesian DSGE models (Fuhrer, 2011). Thus, time-dependent

models are somehow alternative to the assumption of price indexation to the previous

in�ation rate. In fact, indexation implies the so-called �hybrid�New Keynesian Phillips

curve where current in�ation depends on both lagged and expected future in�ation.

The presence of a lagged term permits to model in�ation as an auto-regressive process,

where past in�ation is source of structural intrinsic persistence. Anyway, in�ation in-

dexation is a solution based on ad hoc hypothesis, which is not always supported by

the microeconometric evidence (see e.g. Dhyne et al., 2005; Fabiani et al., 2005).

As mentioned above, positive hazard functions can provide micro-foundations for

the intrinsic persistence for in�ation, which is empirically observed in macro data.

However, it is worth mentioning that micro evidence on price setting about the slope

of the hazard function is mixed, also if the majority of the studies now support up-

ward hazard functions. Results depend on sample, countries, periods considered and

methodologies used. For instance, Nakamura and Steinsson (2008) �nd that the hazard

function for individual prices is initially downward sloping and then �at. By contrast,

Cecchetti (1986), Goette et al. (2005) and Ikeda and Nishioka (2007) �nd strong sup-

port for increasing hazard functions. Álvarez et al. (2005) argue that downward hazard

functions may derive from a bias due to the aggregation of heterogeneous price setters

when micro data are used. Nonetheless, when are taken in account samples ranging

several decades, including periods of high and low in�ation, micro-evidence seems to

agree that hazard functions are increasing.

Regarding wages, which are the focus of our work, evidence for hazard function with

positive slope in the U.S. is supported by the micro study of Barattieri et al. (2010).

However, a discussion about the empirical evidence of positive hazard functions in

13



micro-economic data is outside the scope of the present work, which focuses on the

micro-foundations for the intrinsic inertia of in�ation observed in macro data. For

macroeconomic issues it is important to analyze aggregate hazard since its shape a¤ects

the impulse response of aggregate variables; moreover, the relationship among micro

hazard and macro dynamics is not necessary a one-to-one mapping (Yao, 2011). We

refer to Sheedy (2007) or Yao (2011) for a more detailed discussion about this point.

In what follows we extend the work of Sheedy by investigating if a positive hazard

function also emerges for wage adjustment. In particular we derive a Wage Phillips

curve where the wage reset process has a time-dependent structure, obtaining in this

way a TDWPC with both forward and backward terms, able to exhibit intrinsic persis-

tence. Moreover, we empirically test, via GMM estimation, the statistical signi�cance

of the forward/backward terms emerging from the Phillips curve; we also test if the

hazard is able to satisfy some conditions with regard to its slope and shape. At our

knowledge, our paper is the �rst attempt to micro-found wage intrinsic persistence by

assuming positive hazard function and to estimate the resulting wage Phillips curve by

using macrodata.

The chapter is organized as follows. In the next section we strictly follow Sheedy

(2007) in presenting the hazard function main characteristics; Section 2:3 presents the

derivation of the Wage Phillips curve based on the time-dependent hypothesis; Section

2:4 shows the empirical test performed to investigate how this approach works; a �nal

section concludes.
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2.2 The hazard function

Following Sheedy (2007), we assume that wages are set according to a time-dependent

mechanism: the probability to post a new wage positively depends on the time elapsed

since last wage reset. This adjustment process can be formalized by using a hazard

function.7

Assuming that �t � � denotes the set of households that post a new wage at time

t, we can de�ne the duration of wage stickiness as:

Dt(j) � min fl � 0 j j 2 �t�lg (21)

where Dt(j) is the duration of a wage spell for household j which last reset was l

periods ago.

We now introduce the hazard function, which expresses the relationship between

the probability to post a new wage and the wage duration. The hazard function is

de�ned by a sequence of probabilities: f�lg1l=1, where �l represents the probability to

reset a wage which remained unchanged for l periods. This probability is de�ned as:

�l � Pr (�t j Dt�1 = l � 1).

The hazard function is speci�ed as follows:

�l = �+
min(l�1;n)P

h=1

'h

�
l�1Q
k=l�h

(1� �k)

��1
; (22)

where �l is the probability to change a wage which last reset was l periods ago; � is the

initial value of the hazard function, 'j is its slope; n is the number of parameters that

7We refer to Sheedy (2007) for the proofs relative to the hazard function mentioned here. See in
particular his Appendix A.2 and A.5.
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control the slope �for n = 1, the slope is governed by only one parameter, 'j = '.8

Each hazard function is related to a survival one, which expresses the probability

that a wage remains �xed for l periods. As for the hazard, the survival function is

de�ned by a sequence of probabilities: f& lg1l=0, where & l denotes the probability that a

wage �xed at time t will be still in use at time t+ l. Formally, the survival function is

de�ned by:

& l =
lY

h=1

(1� �h) (23)

with &0 = 1. Following Sheedy (2007), we assume that the hazard function satis�es

two restrictions:8><>: �1 < 1, meaning that is allowed a degree of wage stickiness;

�1 > 0, with �1 = liml!1 �l:
(24)

The hazard function can be reparameterized by making use of a set of n+ 1 para-

meters and rewritten as (22), where f'lg
n
l=1 is a set of n parameters that control the

hazard slope, whereas parameter � controls its initial level.

By making use of (23), we can rewrite the non-linear recursion (22) for the wage

adjustment probabilities as a linear recursion for the corresponding survival function:

& l = (1� �)& l�1 �
min(l�1;n)X

h=1

'h& l�1�h (25)

The parameters f'lg
n
l=1 control the slope of the hazard function in the following

way:

8For the sake of simplicity, we follow Sheedy (2007) using n = 1.
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8>>>><>>>>:
'l = 0, for all l = 1; :::; n the hazard is �at (Calvo case);

'l � 0, for all l = 1; :::; n the hazard is upward-sloping;

'l � 0, for all l = 1; :::; n the hazard is downward-sloping.

(26)

Let �lt � Pr (Dt = l) denote the proportion of households earning at time t a wage

posted at period t� l. The sequence f�ltg1l=0 denotes the distribution of the duration

of wage stickiness at time t. This distribution evolves over the time according to:

8><>:
�0t =

1P
l=1

�l�l�1;t�1

�lt = (1� �l) �l�1;t�1

(27)

If the hazard function satis�es the restrictions (24) and the evolution over the time

of the distribution of wage duration evolves as in (27), then:

a) from whatever starting point, the economy always converges to a unique

stationary distribution f�lg1l=0. Hence �lt = �l = Pr (Dt = l), 8t;

b) let consider (22) and assume that the economy has converged to f�lg1l=0, the

following three relations are obtained:

8>>>>>><>>>>>>:

�l =

�
�+

nP
h=1

'h

�
& l

�e = �+
nP
l=1

'l

De =
1�
Pn

l=1
l'l

�+
Pn

l=1
'l

(28)

where �e denotes the unconditional probability of wage reset and De represents the

expected duration of wage stickiness.
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2.3 Wage Phillips Curve derivation

Our supply side of the economy is fairly standard (see, e.g., Galí, 2008: Chapter 6).

It is composed by a continuum of monopolistically competitive �rms indexed on the

unit interval 
 � [0; 1]. The production function of the representative �rm i 2 
 is

described by a Cobb-Douglas without capital: Yt(i) = AtNt(i)
1��, where Yt(i) is the

output of good i at time t, At represents the state of technology, Nt(i) is the quantity

of labor employed by i��rm and 1� � is the labor share. The quantity of labor used

by �rm i is de�ned by:

Nt(i) =

24Z



Nt(i; j)
"w�1
"w dj

35
"w

"w�1

(29)

where Nt(i; j) is the quantity of j-type labor employed by �rm i in period t and "w

denotes the elasticity of substitution between workers. Cost minimization with respect

to the quantity of labor employed yields to labor demand schedule:

Nt(i; j) =

�
Wt(j)

Wt

��"w
Nt(i) (30)

where Wt(j) is the nominal wage paid to j�type worker and Wt is the aggregate wage

index de�ned in the following way:

Wt =

24 1Z
0

Wt(j)
1�"wdj

35
1

1�"w

(31)

We consider a continuum of monopolistically competitive households indexed on

the unit interval � � [0; 1]. Each household supplies a di¤erent type of labor Nt(j) =
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Nt(i; j)di to all the �rms. The representative household j 2 � chooses the quantity

of labor Nt (j) to supply, in order to maximize the following separable utility:

U(Ct (j) ; Nt (j)) = E0

(
1P
t=0

�t

"
gt
(Ct(j)� hCt�1(j))

1��

1� �
� N1+


t (j)

1 + 


#)
(32)

where E0 is the expectation operator conditional on time t = 0 information, � is

the stochastic discount factor, � denotes the relative risk aversion coe¢ cient, 
 is the

inverse of the Frisch labor supply elasticity and h is an internal habit on consumption.

Finally, gt is a preference shock which is assumed to follow an AR(1) stationary process.

The household faces a standard budget constraint speci�ed as follows in nominal terms:

Pt (j)Ct (j) + Et [Qt+1;tBt (j)] � Bt�1 (j) +Wt (j)Nt (j) + Tt (j) (33)

where Pt (j) is the price of good j, Bt (j) denotes holdings of one-period bonds, Qt is

the bond price, Tt represents a lump-sum government nominal transfer. Finally, Ct (j)

represents the consumption of household j and it is described by a CES aggregator:

Ct (j) =

�R
�

Ct(i; j)
"p�1
"p di

� "p
"p�1

, where Ct(i; j) denotes the quantity of i-type good

consumed by household j and "p is the elasticity of substitution between goods.

In our framework households are wage-setters. In setting wages, each maximizes

(32) internalizing the e¤ects of labor demand (30) and taking account of (33). House-

holds are subject to a random probability to reset price, but, according to our time-

dependent mechanism, a wage change will be more likely to be observed when last

price reset happened many periods ago. Formally, suppose that at time t a house-

hold sets a new wage, denoted by W �
t ,
9 if the household still earns this wage at time

9Since each household solves the same optimization problem henceforth index j are omitted.
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� � t then its relative wage will beW �
t =W� and the household utility can be written as

U
�
W �
t =W� ;C� jt;N� jt

�
;10 by considering the survival function, the household will then

choose its optimal reset wage by solving:

max
W �
t

1X
�=t

&��tEt

( 
�Y

s=t+1

�ps
Is

!
U

�
W �
t

W�

;C� jt;N� jt

�)
(34)

where �ps = Ps=Ps�1 is the gross price in�ation rate and Is = is=is�1 is the gross nominal

interest rate. This maximization is subject to the budget constraint (33) and the labor

demand schedule (30). Equation (34) yields the following �rst-order condition:

1X
�=t

&��tEt

�
W �
t

W�

��"w  �Y
s=t+1

�s
Is

!�
Uc(C� jt; N� jt)

N� jt
P�
(1� "w)+

�"wUn(C� jt; N� jt)
N� jt
W�

W�

W �
t

�
= 0 (35)

where Uc(C� jt; N� jt) is the marginal utility of consumption and �Un(C� jt; N� jt) is the

marginal disutility of labor. Considering that the marginal rate of substitution between

consumption and leisure isMRS� jt = �
Un(C� jt;N� jt)

Uc(C� jt;N� jt)
, and the steady-state wage mark-up

is �w =
"w
"w�1 , equation (35) can be rearranged and expressed in terms of the optimal

wage reset as:

W �
t =

"
�w
�P1

�=t &��t�
��tMRS� jtP�

�P1
�=t &��t�

��t

#
(36)

Assuming that the economy has converged to f�lg1l=0, then the wage level (31) can
10C� jt and N� jt denote respectively the level of consumption and the labour supply at time � of a

household which last wage reset was in period t.
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be expressed as a weighted-average of the past reset wages:

Wt =

 1X
l=0

�lW
�1�"w
t�l

! 1
1�"w

(37)

By log-linearizing (36) and (37) around a steady-state (characterized by zero wage

in�ation), we get:11

w�t =

1X
�=t

 
���t&��tP1
j=0 �

j&j

!
[w� � �w�w� ] (38)

wt =
1X
l=0

�lw
�
t�l (39)

where �w = 1
1+"w


. Equations (38) and (39) describe the wage adjustment mechanism.

The time-dependent wage Phillips curve is derived by combining them with (25) and

(28).

Speci�cally, by combining (25) with (38), we obtain:

w�t = �(1��)Etw�t+1�
nX
l=1

�l+1'lEtw
�
t+l+1 +

"
1� �(1� �) +

nX
l=1

�l+1'l

#
(wt � �w�wt )

(40)

By making use of (28), equation (39) can be recast as follows:

wt = (1� �)wt�1 �
nX
l=1

'lwt�1�l +

 
�+

nX
h=1

'h

!
w�t (41)

where we have used the fact that the stationary distribution of the wage duration (28)

11Small-caps letters denote log-deviation from the steady-state. Details about the TDWPC deriva-
tion are provided in Appendix A.
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can be rewritten in recursive way as:

�l = (1� �)�l�1 �
min(l�1;n)X

h=1

'h�l�h�1 (42)

with �0 = �+
Pn

h=1 'h.

The general expression for the wage Phillips curve is obtained from (40) and (41):

�wt =
nX
l=1

 l�
w
t�l +

n+1X
l=1

�lEt�
w
t+l � kw�

w
t (43)

where the coe¢ cients  l, �l and kw have the following parameterization:

 l =
'l +

Pn
h=l+1 'h

h
1� � (1� �)+

Ph�1
k=1 �

k+1'k

i
�

�1 =
�
h
(1� �)�

Pn
h=1 �

h'h

�
�+
Ph�1

k=1 'k

�i
�

�l+1 = �
�l+1

h
'l +

Pn
h=l+1 �

h�1'h

�
�+
Ph�1

k=1 'k

�i
�

kw =
�w
�
(�+

Pn
h=1 'h)

�
1� � (1� �)+

Pn
h=1 �

h+1'h
��

�

where � = (1� �)�
Pn

h=1 'h

h
1� � (1� �)+

Ph�1
k=1 �

k+1'k

i
, for l = 1; :::; n.

It is easy to check that if we assume that only one parameter controls the slope

of the hazard function (i.e. n = 1), the wage Phillips curve (43) has the following

speci�cation:

�wt =  w�
w
t�1 + � [1 + (1� �) w]Et�

w
t+1 � �2 wEt�

w
t+2 � kw�

w
t ; (44)
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with 8><>:  w =
'w

(1��w)�'w[1��(1��w)]

kw =
(�w+'w)[1��(1��w)+�2'w]
(1��w)�'w[1��(1��w)]

�w

, (45)

where �wt is the wage in�ation,  w and kw are coe¢ cients depending on the hazard

parameters ('w and �w control respectively the slope and the initial level of the hazard

function); �w = 1
1+"w


.

2.4 GMM Estimation

As in Sheedy (2007) we estimate our wage Phillips curve via generalized method of mo-

ments (GMM): we want to investigate if a positive hazard function for wages emerges

(i.e. 'w > 0) and what is the number of backward/forward component of (43) statis-

tically signi�cant, in order to correctly specify the number of parameters a¤ecting the

hazard slope. Since it is not easy to �nd an observable proxy for the wage mark-up,

the latter can be expressed as a function of unemployment, as in Galí et al. (2011):

�wt = 
ut (46)

where ut represents the unemployment gap. Therefore (43) becomes:

�wt =

nX
l=1

 l�
w
t�l +

n+1X
l=1

�lEt�
w
t+l � kw
ut (47)

To perform a GMM estimation of (47) we need to use a set of instruments, in

order to correctly identify all the coe¢ cients. Let zt�1 represents a vector of observable

variables known at time t � 1: under rational expectations the error forecast of �wt
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is uncorrelated with information contained in zt�1; then the following orthogonality

condition holds:

Et

" 
�wt �

nX
l=1

 l�
w
t�l �

n+1X
l=1

�lEt�
w
t+l + kw
ut

!
zt�1

#
= 0 (48)

Following Galí and Gertler (1999), since (48) is non-linear in the structural para-

meters, we normalize the orthogonality condition in the following way:

Et

" 
��wt � �

nX
l=1

 l�
w
t�l � �

n+1X
l=1

�lEt�
w
t+l + �kw
ut

!
zt�1

#
= 0 (49)

Our estimation is made using quarterly U.S. data ranging from 1960:1 to 2011:4:

all the data comes from FRED database maintained by the Federal Reserve Bank of

St. Louis. The wage in�ation is measured by the compensation per hour, whereas

for the unemployment rate we use the civilian unemployment rate. The set of instru-

ments is composed by the lags of the following observable variables: wage in�ation,

unemployment, price in�ation, consumer price index, output gap, labor share, spread

between ten-year Treasury Bond and three-month Treasury Bill yields. In particular

six lags of price in�ation, wage in�ation and CPI, four lags for the output gap and two

lags for the remaining instruments are used. For the sake of brevity we only show the

estimation of (49) when n = 1.12 Under the latter assumption, (48) and (49) change

as follows:

Et
��
�wt �  w�

w
t�1 � �(1 + (1� �) w)Et�

w
t+1 + �2 wEt�

w
t+2 + kw
ut

�
zt�1

	
= 0 (50)

12For n > 1 we successfully test that the extra leads and lags deriving from this speci�cation are
not statistically signi�cant.

24



Et

�
1

�w

�
�wt �  w�

w
t�1 � �(1 + (1� �) w)Et�

w
t+1 + �2w wEt�

w
t+2 + kw
ut

�
zt�1

�
= 0

(51)

where �w = (1� �w)� 'w [1� � (1� �w)].

The structural form of (51) is estimated by imposing � = 0:99, 
 = 2, and "w = 8:85;

the elasticity of substitution between workers is derived as in Galí (2011) by using

"w = [1� exp (�
un)]�1 = 8:85, where we assume a natural unemployment rate un

equal to 6%, as the average rate of the period considered herein. The reduced form

coe¢ cients (45) are convolution of the structural parameters estimated and they are

obtained by substituting these parameters into them; the standard errors are computed

using the delta method.13

The results for the structural form estimation are reported in Table 1. We show

the estimation for the structural parameters 'w (hazard slope) and �w (hazard initial

value); moreover, we also report De and �ew (computed as in (28)) and the J � stat.

Table 1 �Wage Phillips curve estimation (structural form)14

�w 'w De �ew J � stat
0.318� 0.126� 1.964� 0.444� 19.527
(0.050) (0.030) (0.146) (0.033) [0.813]
Notes: a 6-lag Newey-West estimate of the covariance matrix is used.

Standard errors are shown in parentheses.

For the J-stat the p-value is shown in brackets.

* denotes statistical signi�cance at 5% level.

All the estimated coe¢ cients are statistically signi�cant and the hazard function is

estimated to be upward-sloping. The J�stat is a test of over-identifying moment con-

dition: in our case we accept the null hypothesis that the over-identifying restrictions
13See Papke and Wooldridge (2005).
14The estimation has been performed by using Cli¤�s (2003) GMM package for MATLAB available

from https://sites.google.com/site/mcli¤web/programs.
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are satis�ed (the model is �valid�). We now report the reduced form of (50), obtained

by substituting the estimated values of �w and 'w into (45).

�wt = 0:197�wt�1 + 0:991Et�
w
t+1 � 0:193Et�

w
t+2 � 0:03ut

(0:038) (0:000) (0:037) (0:006)
(52)

Also under this speci�cation all the coe¢ cients are statistically signi�cant at 5%

level (standard errors computed using delta method are reported in parentheses). Our

wage Phillips curve, in line with the underlying theory, is able to capture the well-

known negative relation between the unemployment gap and the wage in�ation, as

highlighted by the negative coe¢ cient measuring the slope of the TDWPC. In Figure

1 we report a graphical representation for the hazard and survival functions deriving

from our estimation and computed respectively by using (22) and (25). The hazard

clearly shows a positive slope, meaning that a time-dependent mechanism for wage

adjustment emerges.
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Figure 1 - Hazard and survival function deriving from GMM estimation.
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2.5 Conclusions

In this chapter we have extended the results found by Sheedy (2007) to wage in�ation.

Assuming monopolistic competition on labor market and staggered wage setting, we

derived a Wage Phillips curve able to account for in�ation persistence, simply relying

on the assumption of time-dependent adjustment based on the use of a positive haz-

ard function. The empirical test performed con�rms that a positive hazard function

emerges for wage adjustment process. Thus, under this framework, we are able to

obtain a Phillips curve exhibiting intrinsic persistence, without the necessity to impose

some form of indexation.
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Chapter 3

Price and wage in�ation intrinsic
inertia

3.1 Introduction

In this chapter we derive and estimate a small-scale New Keynesian model with time-

dependent price and wage adjustments. Speci�cally, we replace Calvo mechanism with

a model of price-setting featuring an upward-sloping hazard function, based on the

idea that the probability of resetting a price depends on the time occurred since the

last reset; thus, we consider price and wage Phillips curves including backward-looking

terms, which are, therefore, endogenously derived.

Our model generalizes Erceg et al. (2000; EHL from now on) to time-dependent

price and wage adjustments á la Sheedy (2007). Time-dependent models imply that a

price or wage change will be more likely to be observed when last price reset happened

many periods ago, i.e. the probability to reset a price is time-dependent. This mecha-

nism can be formalized by using a hazard function, which shows the relation between

the probability to post a new price and the time elapsed since the last reset: if the

hazard function has a positive slope the likelihood to adjust a price is an increasing

function of the time (Sheedy, 2007).15

15Calvo pricing model is a particular case where the hazard function is �at, i.e. the probability to
reset a price is exogenously randomly assigned to all the �rms independently of the last time they
have reset their prices.
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Specifcally, we derive and take to the data a small-scale New Keynesian model

with time-dependent price and wage adjustments. The point of departure is given by

Sheedy (2007), who replaces the Calvo price-setting assumption, in which the hazard

function of price changes is �at, with a model of price-setting featuring an upward-

sloping hazard function. As a result of this modi�cation, the resulting New Keynesian

Phillips curve includes backward-looking terms, which are, therefore, endogenously

derived without recurring to common features as automatic indexation to past in�ation

in price setting. Our paper borrows Sheedy�s mechanism and extends it to wage setting

as well, by deriving a wage in�ation equation under time-dependent wage adjustment.

By using Bayesian techniques, we compare the empirical performance of our model to

several popular alternatives based on di¤erent price and wage adjustment mechanisms,

including Calvo pricing. By comparing log-marginal likelihoods of di¤erent estimations,

we �nd that our model clearly outperforms these alternatives. Finally, following Benati

(2008, 2009), we also test the robustness of time-dependent adjustments to policy

regime shifts.

Our model is estimated for U.S. economy with Bayesian estimation techniques. Af-

ter writing the model in state-space form we evaluate the likelihood function using

the Kalman �lter. The posterior distribution of the structural parameters is obtained

combining priors with the likelihood function. The estimation of the model is per-

formed using informative priors and, as robustness check, non-informative priors for

the parameters a¤ecting the slope of the hazard function.

In a similar paper Benati (2009) analyzes several models to build in�ation persis-

tence including Sheedy (2007).16 He �nds evidence of positive-sloping hazard functions,

16Speci�cally, Benati (2009) analysed Fuhrer and Moore (1995), Galí and Gertler (1999), Blanchard
and Galí (2007), Sheedy (2007), Ascari and Ropele (2009).
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but, by considering the Great Moderation sub-sample, he also �nds that the parame-

ters encoding the hazard slope have dropped to zero in last thirty years. He concludes

that these parameters depend on the monetary regime referring to the switch in the

way to conduct monetary policy discussed in Clarida et al. (2000). However he only

focuses on price in�ation: we generalize his setup by considering staggered wages with

possible time-dependent adjustment process in the labor markets. Stickiness and per-

sistence in wages may have important implications for both in�ation persistence and

monetary policy e¤ects. Then, by considering a sub-sample, we check if the hazard

function remains strictly positive during the Great Moderation in our framework.

Moreover, following Rabanal and Rubio-Ramirez (2005), we also compare the per-

formance of our model to others based on alternative speci�cations for price and wage

adjustments. Our goal is to test the improvement in explaining the data, in terms of

marginal likelihood, due to our mechanism to micro-found in�ation persistence. Specif-

ically, as alternatives we consider �at hazard functions (price and wage Phillips curves

á la Calvo) with indexation, which is a popular assumption to take account for in�ation

persistence (see Galí and Gertler, 1999; Christiano et al., 2005).

The main contributions of our work are three and can be summarized as follows.

First, the micro-foundation of wage in�ation persistence, relying on the assumption of

time-dependent adjustment, allows us obtain hump-shaped response of wage in�ation

to a cost-push shock, which does not emerge in the case of indexation to past-price

in�ation. Second, by estimating a model similar to Benati (2009) including time-

dependent wage setting, we �nd that parameters encoding intrinsic persistence remain

signi�cantly di¤erent from zero also during the Great Moderation sub-sample, so they

are �deep� in the sense of Lucas. Three, by comparing marginal likelihoods, we �nd

31



that our model outperforms alternative speci�cations for price and wage adjustments,

i.e. Calvo with indexation and Calvo augmented by Galí-Gertler mechanism for prices

and wages.

Our results are quite robust. Among others, we successfully test their robustness

by considering non-informative priors for the parameters a¤ecting the intrinsic com-

ponent of in�ation inertia. Moreover, we provide estimations of our model for several

countries that switched their policy regime and show that, in each case, a positive

hazard functions still emerge.

The rest of the chapter is organized as follows. In the next section, after brie�y

introducing Sheedy mechanism, we consider a simple small-scale model characterized

by price and wage Phillips curve able to account for intrinsic in�ation persistence.

Section 3:3 presents ours model estimations, whereas Section 3:4 compares them to

EHL and its extension with di¤erent kind of in�ation indexation. Section 3:5 shows

estimations for a set of countries that recently changed their monetary regime. A �nal

section concludes.

3.2 The model

Our model generalizes EHL (2000) by assuming that price and wage adjustments are

governed by a time-dependent mechanism. In order to improve the empirical realism

of our model we have also considered habit formation, which implies persistence in the

IS curve. As we mainly di¤er from EHL (2000) for the derivation of the Phillips curves,

the description of the demand side of the economy is not detailed. For a full derivation

of the model, we refer to EHL (2000). We report the log-linear deviations from the

steady state.
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3.2.1 Hazard function and Phillips curves

According to Sheedy (2007),17 the probability to adjust a price is not random as in

Calvo speci�cation, but depends on the time elapsed since last price reset. This means

that the probability to change a price is not equal among �rms, but it is positive

function of the time. Formally, price and wage adjustments are de�ned by using a

hazard function, which expresses the relationship between the probability to reset a

price and the duration of price stickiness. The hazard function is speci�ed as follows:

�i = �+
min(i�1;n)P

j=1

'j

"
i�1Q
k=i�j

(1� �k)

#�1
; (53)

where �i is the probability to change a price which last reset was i periods ago; � is the

initial value of the hazard function, 'j is its slope; n is the number of parameters that

control the slope �for n = 1, the slope is governed by only one parameter, 'j = '.18

By using (53), as shown by Sheedy (2007), we can derive a price Phillips curve that

depends on both expected19 and past in�ation. Formally:

�pt =  p�
p
t�1 + �

�
1 + (1� �) p

�
Et�

p
t+1 � �2 pEt�

p
t+2 + kp (mct + �t) ; (54)

where �pt is the price in�ation rate and mct is the real marginal cost; � is the stochastic

discount factor, �t is a price mark-up shock; the coe¢ cients  p and kp are function of

17Note that the hazard function used in by Sheedy (2010) is an equivalent reparametrization of
Sheedy (2007). Both hazard functions lead to the same Phillips curve speci�cation.
18For the sake of simplicity, we follow Sheedy (2007) using n = 1.
19Both in�ation at time t + 1 and t + 2 are relevant. Although the coe¢ cient associated with the

latter is negative, the overall e¤ect of expected in�ation is positive on its current rate. The second
order term in the di¤erence equation captures the dynamics of the adjustment process. See Sheedy
(2007) for a discussion.
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the parameters characterizing the hazard function:

8><>:  p =
'p

(1��p)�'p[1��(1��p)]

kp =
(�p+'p)[1��(1��p)+�2'p]
(1��p)�'p[1��(1��p)]

�cx

(55)

Parameters 'p and �p characterize the hazard function: the former controls the slope

and the latter the starting level (i.e. ' and � in (53)); �cx =
1��

1��+�"p is the elasticity

of a �rm�s marginal cost with respect to average real marginal cost, where 1� � is the

labor share and "p is the elasticity of substitution between workers. The elasticity �cx

is derived from a simple Cobb-Douglas production function without capital:

yt = at + (1� �)nt; (56)

where yt denotes output, at is the technology shock and nt is the amount of hours

worked.

The real marginal cost is given by:

mct = !t + nt � yt; (57)

where !t denotes the real wage.

By de�nition, the real wage dynamics is described by:

!t � !t�1 = �wt � �pt : (58)

The marginal rate of substitution, mrst, between consumption and hours worked
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is given by:

mrst =
�

1� h
(yt � hyt�1) + 
nt � gt; (59)

where � denotes the relative risk aversion coe¢ cient, h is an internal habit on consump-

tion and gt denotes a preference shifter shock. Since the labor market is characterized

by imperfect competition the di¤erence between the real wage and the marginal rate

of substitution is equal to the wage mark-up:

�wt = !t �mrst: (60)

We assume monopolistic competition on the labor market and derive a New Key-

nesian wage Phillips curve that exhibits intrinsic in�ation persistence from the hazard

function. Formally:20

�wt =  w�
w
t�1 + � [1 + (1� �) w]Et�

w
t+1 � �2 wEt�

w
t+2 � kw�

w
t ; (61)

with 8><>:  w =
'w

(1��w)�'w[1��(1��w)]

kw =
(�w+'w)[1��(1��w)+�2'w]
(1��w)�'w[1��(1��w)]

�w

, (62)

where �wt is the wage in�ation,  w and kw are coe¢ cients depending on the hazard

parameters (as in the case for prices, 'w and �w control respectively the slope and the

initial level of the hazard function); �w = 1
1+"w


, where "w denotes the elasticity of

substitution between workers and 
 is the inverse of the Frisch labor supply elasticity.

Inspecting equation (61) is clear that the mechanism studied in our paper provides

20Equation (61) is derived in Chapter 2.
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micro-foundations for lagged terms in wage in�ation equations. It is worth noticing

that it micro-founds persistence directly related to wage in�ation rather than price

in�ation as in model with indexation to past values of prices.

3.2.2 Closing the model: IS curve and Taylor rule

The model is closed by introducing the demand side of the economy and the mone-

tary policy rule. The demand side (IS curve) is obtained by log-linearizing the Euler

equation around the steady-state, formally:

yt =
1

1 + h
Etyt+1 +

h

1 + h
yt�1 �

1� h

� (1 + h)

�
it � Et�

p
t+1 + Etgt+1 � gt

�
; (63)

where it is the nominal interest rate set by the central bank and lagged terms are due

to the presence of internal-consumption habits.

Monetary policy is modelled as a simple Taylor rule:

it = �rit�1 + (1� �r) (���
p
t + �xyt) + �t; (64)

where �r captures the degree of interest rate smoothing, �� and �x measure the response

of the monetary authority to the deviation of in�ation and output from their steady-

state values; �t is a monetary policy shock.

Aside from the monetary disturbance,21 all the shocks considered in the model

21Monetary policy persistence is already captured by the lagged term in (64). We have however
successfully checked the robustness of our result with respect to alternative assumptions. Speci�cally,
we have considered an AR(2) process for the interest rate in equation (64). Results are showed in
Appendix B.
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follow an AR(1) process: 8>>>>>>><>>>>>>>:

at = �aat�1 + "at ;

gt = �ggt�1 + "gt ;

�t = ���t�1 + "�t ;

�t = "�t ;

(65)

where "jt � N
�
0; �2j

�
are white noise shocks uncorrelated among them and �j is the

parameter measuring the degree of autocorrelation for each shock, for j = fa; g; �g.

3.3 Empirical analysis

We estimate our model by Bayesian techniques. Our choice is motivated by the fact

that Bayesian methods outperform GMM and maximum likelihood in small samples.22

After writing the model in state-space form, the likelihood function is evaluated using

the Kalman �lter, whereas prior distributions are used to deliver additional non-sample

information into the parameters estimation: once a prior distribution is elicited, pos-

terior density for the structural parameters can be obtained reweighting the likelihood

by a prior. The posterior is computed via numerical integration by making use of the

Metropolis-Hastings algorithm for Monte Carlo integration; for the sake of simplicity

all structural parameters are assumed to be independent from each other.

We use four observable macroeconomic variables: real GDP, price in�ation, real

wage, nominal interest rate. The dynamics is driven by four orthogonal shocks, includ-

ing monetary policy, productivity, preference and price mark-up; since the number of

observable variables is equal to the number of exogenous shocks the estimation does not

22For an exhaustive analysis of Bayesian estimation methods see Geweke (1999), An and Schorfheide
(2007) and Fernández-Villaverde (2010).
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present problems deriving from stochastic singularity.23 The estimation of the model is

performed by using informative priors and, as robustness check, non-informative priors

for the parameters characterizing the slope of the hazard function.

We aim to test if the model exhibits positive hazard function, i.e. time-dependent

price/wage adjustments holds. After estimating our model for the full sample (1960:1-

2008:4), we also consider a smaller one (1982:1-2008:4), representative of the Great

Moderation, in order to investigate if a positive hazard function still holds in a period

characterized by small volatility of the shocks and more aggressive central bankers

in �ghting in�ation. By considering only time-dependent price adjustment and �ex-

ible wages, Benati (2009) showed that during the Great Moderation, the parameters

encoding the structural component of in�ation persistence have dropped to zero.

Finally, we evaluate the empirical performance of our time-dependent Phillips

curves to alternative speci�cations commonly used in literature. We consider the tra-

ditional forward-looking Phillips curves derived in EHL (2000) extended with price

and wage indexation, which is often claimed as one main assumption to account for

in�ation persistence. Model comparison is based on log-marginal likelihood. In order

to apply this methodology, we will show how models compared here are nested.

Next subsection presents the data used and prior distributions. Section 3:4 provides

the estimation for the baseline model. Section 3:5 evaluates our time-dependent model

against alternative speci�cations.

23Problems deriving from misspeci�cation are widely discussed in Lubik and Schorfheide (2006) and
Fernández-Villaverde (2010).
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3.3.1 Data and prior distributions

In our estimations, we use U.S. quarterly data. All the time series used come from

FRED database maintained by the Federal Reserve Bank of St. Louis. The real gross

domestic product is used as measure of the output; the e¤ective Fed funds rate is

used for the nominal interest rate. Price in�ation is measured using the GDP implicit

price de�ator taken in log-di¤erence. Real wage is obtained dividing the nominal

wage, measured by the compensation per hour in nonfarm business sector, by the

GDP implicit price de�ator. All the variables have been demeaned; output and real

wage are detrended by using the Baxter and King�s bandpass �lter.

Our choices about prior beliefs are as follows. The coe¢ cients of the Taylor rule

are centered on a prior mean of 1:5 for in�ation and 0:125 for the output gap and

follow a Normal distribution. These values are quite standard in the literature. The

smoothing parameter is assumed to follow a Beta distribution with mean 0:6 and

standard deviation equal to 0:2. The same choice has been made for the consumption

habit. The inverse of Frisch elasticity is a tricky parameter to estimate: our choice is

based on a Gamma distribution with mean 2 and standard deviation 0:375.

For the hazard function coe¢ cients we perform an �informative estimation� by

using as priors coe¢ cients estimated from single equation GMM;24 we assign a Normal

distribution to 'p and 'w with standard deviation equal to 0:2; whereas �p and �w

follow a Beta distribution with standard deviation 0:1. As robustness check, following

24The GMM estimation for the Wage Phillips curve is showed in Chapter 2. For the hazard char-
acterizing price adjustment we directly use as priors the GMM estimates of Sheedy (2007).
The sample range, the data and the TDWPC speci�cation used for GMM estimation di¤er from

those of Bayesian estimation. We made this choice in order to avoid that the Bayesian comparison
might unduly favor our model with respect to the alternatives considered. However, we chose to
perform a "non-informative" estimation for the hazard slope parameters to test the robustness of our
comparison (see Table 3).

39



Benati (2009), we also estimate the model by using non-informative priors for the

parameters a¤ecting the slope of the hazard function, instead of those derived from the

GMM estimations. Di¤erently from him, we use a Uniform distribution with support

[�1; 1]: the choice of such a large interval is motivated by the fact that we want to

investigate if the hazard slope is positive, negative or zero.

We need to calibrate some parameters in order to avoid identi�cation problems.25

Since we consider a production function without capital, it is di¢ cult to estimate �

and �; which are set to 0:99 and 0:33, respectively. Similarly, we �x "p = 6 and

"w = 8:85, implying a price and wage mark-up equal to 1:20 and 1:12. Price elasticity

is calibrated following Sheedy (2007), to be coherent with the hazard priors derived

from his GMM estimation. Wage elasticity is derived as in Galí (2011) by using "w =

[1� exp (�
un)]�1 = 8:85, where we assume 
 = 2 and a natural unemployment

rate un equal to 6%, as the average rate of the period considered. Finally, all the

autoregressive coe¢ cients of the shocks follow a Beta distribution with mean 0:5 and

standard deviation equal to 0:2. The prior for the shocks standard deviations is an

Inverse Gamma with mean 0:01 and 2 degrees of freedom.

3.3.2 Estimation results

Our baseline model consists of six equations, describing: the production function (56);

the real marginal cost (57); the real wage dynamics (58); the marginal rate of substi-

tution (59); the dynamic IS (63); the Taylor rule (64). Two additional equations close

the model: the price and wage Phillips curve. In our baseline estimation we consider

25The identi�cation procedure has been performed by using the Identi�cation toolbox for Dynare,
which implements the identi�cation condition proposed by Iskrev (2010a, 2010b). For a review of
identi�cation issues arising in DSGE models see Canova and Sala (2009).
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the time-dependent form for both price and wage equation, i.e. equations (54) and

(61). Shocks dynamics are described by (65). Our estimations are reported in Table 2,

which also summarizes the 90% probability intervals and our assumptions about the

priors. The table describes the results for the full sample and the Great Moderation.

We report posterior estimation of the shocks and structural parameters, obtained by

Metropolis-Hastings algorithm, when informative priors for the hazard slope are used.

Table 2 �Prior and posterior distributions26

Prior distribution Posterior distribution Posterior distribution
(full sample) (Great Moderation)

Density Mean St. Dev.27 Mean 5% 95% Mean 5% 95%
� Gamma 1.0 0.375 1.324 0.673 1.955 1.227 0.581 1.820

 Gamma 2.0 0.375 2.515 2.041 2.997 2.249 1.732 2.748
h Beta 0.6 0.2 0.906 0.866 0.946 0.908 0.863 0.955
�� Normal 1.5 0.25 1.423 1.197 1.650 1.851 1.524 2.158
�x Normal 0.125 0.05 0.215 0.152 0.279 0.164 0.096 0.235
�r Beta 0.6 0.2 0.818 0.787 0.850 0.850 0.819 0.883
�p Beta 0.132 0.1 0.020 0.001 0.042 0.063 0.001 0.124
'p Normal 0.222 0.2 0.195 0.157 0.233 0.128 0.048 0.213
�w Beta 0.318 0.1 0.126 0.073 0.179 0.151 0.073 0.228
'w Normal 0.126 0.2 0.242 0.210 0.277 0.250 0.203 0.297
�a Beta 0.5 0.2 0.781 0.706 0.854 0.850 0.819 0.883
�g Beta 0.5 0.2 0.768 0.717 0.817 0.802 0.738 0.867
�� Beta 0.5 0.2 0.825 0.762 0.889 0.822 0.732 0.910
�a Inv. Gamma 0.01 2 0.019 0.013 0.025 0.014 0.008 0.019
�g Inv. Gamma 0.01 2 0.053 0.038 0.068 0.044 0.028 0.059
�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.001 0.001 0.002
�� Inv. Gamma 0.01 2 0.020 0.013 0.028 0.030 0.012 0.047

26The posterior distributions are obtained using Metropolis-Hastings algorithm; the procedure is
implemented using the Matlab-based Dynare package. Mean and posterior percentiles come from two
chains of 250,000 draws each from Metropolis-Hastings algorithm, where we discarded the initial 30%
draws. The scale factor of the covariance matrix has been set in order to achieve an acceptance rate
of about 25%.
27For the Inverse Gamma distribution the degrees of freedom are indicated.
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In the full sample case, the estimated hazard function is upward-sloping, since

'p and 'w are both positive. Thus, time-dependent mechanism seems to be able to

account for in�ation inertia for both prices and wages. The duration of a price spell

is 3:7 quarters, whereas wages appear to be less sticky, since their duration is 2:05

quarters.28 The response of monetary authority to in�ation and output gap is in line

with the Taylor principle; the estimated degree of interest rate smoothing is 0:82. All

the shocks exhibit a high degree of autocorrelation, near to 0:8. With regard to the

parameters characterizing the utility function (i.e. habit, relative risk aversion and

inverse of Frisch elasticity), their estimations are coherent with the standard �ndings

in literature.

By considering the Great Moderation sub-sample, di¤erently from Benati (2009),

we �nd that hazard function continues to exhibit positive slope, since both 'p and 'w

are positive. This result gives us evidence that a pricing mechanism based on hazard

function still holds also in a period characterized by a central bank more concerned in

�ghting in�ation, as highlighted by the higher estimated coe¢ cient for ��. As a result

intrinsic persistence also holds for the Great Moderation period. Price duration is now

4:5 quarters: this is highlighted by the fact that the hazard function sloping is still

positive, but smaller. This fact is in line with macroeconomic theory: as from the Great

Moderation in�ation has dropped, the cost of not adjusting a price is smaller and this

translates in longer price spell. By contrast, computed wage stickiness is rather stable

re�ecting the fact that wage bargaining is more in�uenced by institutional factors.29

28The durations (D) of price and wage stickiness are computed by using the following relation:
D = 1�'

�+' (see Sheedy, 2007).
29Considering a Walrasian labor market, as in Benati (2008, 2009), may force the estimated-price

Phillips curve to capture also wage stickiness present in the data. This leads to an overestimation
of price duration, which, in the Great Moderation subsample, drops to zero the hazard coe¢ cients
implying a quite �at hazard function and no intrinsic persistence in price in�ation.
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In Figure 2 we plot prior distribution, posterior distribution and posterior mode of

the estimated parameters.

Figure 2 - Prior distribution (grey curve), Posterior distribution (green curve) and Posterior mode

(dotted line) of the estimated parameters.
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Bayesian estimations of DSGE models can be quite sensitive to the choice of priors

for model-speci�c parameters and other assumptions regarding e.g. measures of vari-

ables used, shock speci�cations. Thus, we have checked the robustness of our analysis

by considering also uniform priors for the parameters 'p and 'w with support [�1; 1],30

whereas the prior distributions for the remaining parameters are the same used previ-

ously. Results are provided in Table 3. The �non-informative�estimation con�rms our

results about the hazard function, which is still characterized by positive slope, both in

full sample and during the Great Moderation; the estimated parameters for the hazard

slope are very similar to the ones estimated under �informative�priors. This result

shows as the hazard function mechanism is robust to a change of policy. We have

also successfully checked the robustness of our results by considering di¤erent model

speci�cation (i.e., model without habit), various speci�cations for monetary shocks (as

already mentioned) and alternative series for observable variables.31

30Choosing this large support we can test if the hazard slope is negative, positive or �at. The prior
mean is centered on 0.
31These results are available in Appendix B.
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Table 3 - Prior and posterior distributions under non-informative priors
Prior distribution Posterior distribution Posterior distribution

(full sample) (Great Moderation)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.321 0.670 1.933 1.227 0.595 1.834

 Gamma 2.0 0.375 2.511 2.021 2.974 2.251 1.738 2.753
h Beta 0.6 0.2 0.906 0.868 0.948 0.909 0.865 0.957
�� Normal 1.5 0.25 1.428 1.203 1.661 1.855 1.545 2.171
�x Normal 0.125 0.05 0.215 0.151 0.277 0.165 0.096 0.234
�r Beta 0.6 0.2 0.818 0.787 0.850 0.851 0.820 0.882
�p Beta 0.132 0.1 0.020 0.001 0.041 0.067 0.001 0.133
'p Uniform 0 0.57 0.195 0.158 0.236 0.125 0.042 0.213
�w Beta 0.318 0.1 0.126 0.073 0.177 0.151 0.072 0.225
'w Uniform 0 0.57 0.243 0.209 0.276 0.252 0.207 0.298
�a Beta 0.5 0.2 0.780 0.704 0.854 0.832 0.755 0.910
�g Beta 0.5 0.2 0.768 0.719 0.817 0.800 0.738 0.866
�� Beta 0.5 0.2 0.824 0.760 0.887 0.824 0.737 0.914
�a Inv. Gamma 0.01 2 0.019 0.013 0.025 0.014 0.008 0.019
�g Inv. Gamma 0.01 2 0.052 0.038 0.067 0.044 0.029 0.061
�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.001 0.001 0.002
�� Inv. Gamma 0.01 2 0.020 0.013 0.028 0.029 0.013 0.044

3.4 Time-dependent Phillips vs. alternatives

In this section we aim to compare the empirical performance of our time-dependent

Phillips curves to di¤erent speci�cations for price and wage adjustments. In our frame-

work this can be easily done as the model encompasses several alternatives. Simply

by setting 'p = 0 and 'w = 0, we obtain �at hazard functions, and therefore, price

and wage Phillips curves á la Calvo. Moreover, di¤erent kinds of indexation can be

introduced by minimal manipulations. In the following we show how to derive the EHL

(2000) Phillips curves from our model and augment them by indexation and then we

compare these alternatives to our baseline model in terms of log-marginal density.
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3.4.1 Alternative price-setting mechanisms: EHL with indexation

It is easy to verify that the price Phillips curve (54) nests the EHL case. Assuming

'p = 0, we get:

�pt = �Et�
p
t+1 + �p (mct + �t) (66)

where �p =
�p[1��(1��p)]

1��p �cx. Equation (66) can be also augmented by indexation:

�pt =
�p

(1 + �p�)
�pt�1 +

�

1 + �p�
Et�

p
t+1 + ��p (mct + �t) (67)

where �p denotes the degree of price indexation to last period�s in�ation, and �
�
p =

�p
(1+�p�)

.

Similarly, equation (61) nests the EHL case for 'w = 0:

�wt = �Et�
w
t+1 � �w�

w
t (68)

where �w =
�w[1��(1��w)]

1��w �w. It can be augmented by indexation:

�wt = �w�
p
t�1 � �w��

p
t + �Et�

w
t+1 � �w�

w
t (69)

where �w denotes the degree of wage indexation to last period�s in�ation.

3.4.2 Galí-Gertler setting

A further speci�cation to account for in�ation persistence has been introduced by

Galí and Gertler (1999). They proposed a modi�cation of the Calvo mechanism by

introducing partial indexation due to a backward looking rule of thumb. The Phillips
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curves are speci�ed as follows:

�pt =
�p
�p
�pt�1 +

� (1� �p)

�p
Et�

p
t+1 + ��p (mct + �t) (70)

�wt =
�w
�w

�pt�1 +
� (1� �w)

�w
Et�

w
t+1 � ��w�

w
t (71)

where �p measures the degree of price indexation to past in�ation, �p denotes the

degree of wage indexation to past in�ation, �p = 1 � �p + �p [�p + (1� �p) �], �w =

1� �w + �w [�w + (1� �w) �], �
�
p =

�p(1��p)[1��(1��p)]
�p

and ��w =
�w(1��w)[1��(1��w)]

�w(1+"w
)
:

3.4.3 Model comparison

As shown above, our formalization nests di¤erent models of price and wage adjust-

ment. Di¤erences only depend on the Phillips curve parameterization. By di¤erent

assumptions on 'p, 'w, �p, �w, �p, �w, we can consider positive hazard functions or

�at hazard functions augmented by two di¤erent kind of indexation. We compare our

baseline (BASE) to two alternative scenarios:32

1. EHL model with indexation (EHLind), by considering (67) and (69);

2. EHL model with indexation á la Galí-Gertler (GG), by considering (70) and (71).

The measure used to compare the models is the log-marginal likelihood, which is

a measure of the �t of a model in explaining the data. The aim is to evaluate if the

way in which is modeled price and wage adjustment a¤ects the �t a model. The model

32We omit the comparison with a model characterized by simple forward-looking Phillips curves á
la Calvo since this model has not intrinsic persistence. Anyway, Rabanal and Rubio-Ramirez (2005)
showed that this model exhibits quite the same performance of a model with indexation.
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with the highest log-marginal likelihood better explains the data.33 Table 4 reports

our results.

Table 4 - Log-marginal data densities and Bayes factors for di¤erent models34

Model Log-marginal data density Bayes factor vs. BASE
BASE 3615:6
BASE (non-info) 3613:6 exp [�2:0]
EHLind 3569:7 exp [�45:9]
GG 3564:8 exp [�50:8]

The di¤erence, in terms of marginal likelihood, between Galí-Gertler speci�cation

and EHL augmented by indexation is minimal. According to Je¤reys� scale of evi-

dence,35 this di¤erence must be considered as �slight� evidence in favor of EHLind

with respect to GG. However, our model clearly outperforms both the alternative

considered: in particular, Bayes factor gives �very strong� evidence in favor of our

speci�cation. This means that the pricing method based on hazard functions seems

to capture better in�ation inertia. Under �non-informative�priors we observe a slight

decrease of the marginal likelihood: this happens since under di¤use priors there is an

increase of model complexity and this penalizes the marginal data density (this e¤ect

dominates the improvement in model �t).

In the comparison between our time-dependent adjustment model and the models

with indexation or rule-of-thumb �rms, the �t of the di¤erent models is judged by

33For details on model comparison technique, see Fernández-Villaverde and Rubio-Ramirez (2004),
Rabanal and Rubio-Ramirez (2005), Lubik and Schorfheide (2006), Riggi and Tancioni (2010).
34For the computation of the marginal likelihood for di¤erent model speci�cations we used the

modi�ed harmonic mean estimator, based on Geweke (1999). The Bayes factor is the ratio of posterior
odds to prior odds (see Kass and Raftery, 1995).
35Je¤reys (1961) provided a scale for the evaluation of the Bayes factor indication. Odds ranging

from 1:1 to 3:1 give �very slight evidence;�odds ranging from 3:1 to 10:1 constitute �slight evidence;�
odds ranging from 10:1 to 100:1 constitute �strong to very strong evidence;�odds greater than 100:1
give �decisive evidence.�
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looking at marginal likelihood comparisons. Notwithstanding all in�ation equations

include a combination of backward-looking and forward-looking terms for the main

dependent variables which may imply similar reduced forms, the di¤erences are signif-

icant (as evidenced from the Bayes factors). Large improvements are mainly due to

the fact that our mechanism provides micro-foundations for nominal wage persistence

in the wage-in�ation equations. This does not occur under wage indexation because

this is usually associated to a price index.36 As a result our wage Phillips curve better

captures wage dynamics. In particular, it is able to replicate hump-shaped response

in wage in�ation. Figure 3 shows the wage IRFs to a price mark-up shock based on

estimated version of the three alternative speci�cations.

Figure 3 - IRFs of the wage in�ation to 1% price

mark-up shock for di¤erent model speci�cations.

It is clear as a model based on time-dependent Phillips curves is able to exhibit

the hump-shaped response of wage in�ation to a shock, whereas the others do not.

36The reduced form of the estimated Phillips curves considered herein are reported in Appendix D.
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This is due to the fact that for wage in�ation, under time-dependent pricing models,

the persistence component is �intrinsic�; this fact explains the large di¤erence between

models highlighted by the Bayes factor.

3.5 International evidence

We have estimated our model also for a wider set of countries in order to investigate if

time-dependent Phillips curves, based on upward hazard function, still emerge in the

sample considered. The set we use is characterized by countries that have changed their

monetary regime, concerning more on in�ation stabilization, allowing us to analyze if

the hazard parameters strictly remain positive after the regime switch. In particular

we consider Australia and United Kingdom that, respectively since 1994:1 and 1992:4,

adopt an in�ation targeting regime; moreover, we have estimated the model for France,

Germany and Italy that, since 1999:1, joined the European Monetary Union (EMU). In

Table 5 we report our estimations for the hazard parameters, both for the full sample

and the sub-sample aforementioned.37

Table 5 �Posterior mean estimation for di¤erent countries
Australia UK France Germany Italy

full inf. targ. full inf. targ. full EMU full EMU full EMU
�p 0.05 0.09 0.05 0.07 0.07 0.10 0.04 0.08 0.04 0.07
'p 0.26 0.23 0.22 0.19 0.12 0.08 0.25 0.18 0.20 0.15
�w 0.20 0.29 0.27 0.23 0.14 0.20 0.19 0.20 0.12 0.15
'w 0.24 0.16 0.13 0.17 0.16 0.07 0.23 0.18 0.27 0.20

Our estimations con�rm the results found in Section 3:3: the hazard function is

increasing and its slope, although slightly drops, remain strictly positive also after
37In Appendix C we provide details on the data, prior and sample considered for each country and

show the results for complete set of estimated parameters.
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a change in the way to conduct monetary policy. These results furtherly con�rm

our evidence that time-dependent adjustment is a valid approach to micro-found and

capture in�ation persistence.

3.6 Conclusions

We have built and estimated a model that considers both price and wage adjustment

governed by the time-dependent mechanism described by Sheedy (2007). By making

use of a hazard function, we have derived price and wage Phillips curves that are able in

micro-founding price and wage in�ation intrinsic persistence�as they are characterized

by both forward and backward terms for in�ation. We have estimated our model

with Bayesian techniques. The estimation of our model has con�rmed that a hazard

function upward-sloping emerges. Di¤erently from Benati (2009), who only considers

price in�ation, we �nd that the hazard function slope does not change with the policy

regime, i.e. during the Great Moderation era. Finally, we have compared the empirical

performance in �tting the data of our model to those of others based on popular

alternative mechanisms for price and wage adjustment. By comparing log-marginal

likelihoods of di¤erent estimations, we have found that our model clearly outperforms

alternatives. This result is driven by the dynamics of the wage in�ation that, under

our TDWPC speci�cation, is given by a hump-shaped response to a cost push shock.

51



Chapter 4

Welfare and optimal monetary
policy

4.1 Introduction

The analysis of the optimal monetary policy implemented by the Central Bank is a

central issue in macroeconomics. Since the seminal work of Kydland and Prescott

(1977) many research papers has been devoted to investigate how a central banker

should behaves in facing a shock, in order to maximize the social welfare. In its

simpler speci�cation, according to Clarida et al. (1999), we can consider a simple New

Keynesian DSGE macroeconomic model described by two equations: an IS schedule,

representing the demand side of the economy, and a New Keynesian Phillips Curve

(NKPC henceforth) for the supply side. Formally, we have:

xt = Etxt+1 + ! (it � Et�t+1 � rnt ) (72)

�t = �Et�t+1 + �xt + ut (73)

where ! < 0, � > 0 and ut is a cost-push shock assumed to follow an AR (1) process;

all the variables are expressed in log-deviation from their steady state. Equation (72)

is the IS curve, which relates the output gap, expressed as the log-deviation of the
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output from its natural level,38 with the expectations of future output gap level and

real interest rate gap; the supply curve (73) describes the in�ation dynamics as a

process depending on the expectations of future in�ation and on real activity, the

latter measured by the output gap.

In order to derive the optimal policy rule followed by the monetary authority,

we need to compute the Central Bank�s loss function. By considering a second-order

Taylor approximation of the households utility function, it is possible to derive a welfare

function having a quadratic form:

Wt =
1

2

�
�2t + �y2t

�
(74)

where � is the relative weight attached to output gap stabilization. From (74), it is

clear as the Central Bank has two objectives: stabilizing in�ation and output gap. The

policymaker will solve an optimization problem by minimizing the discounted sum of

(74) subject to the constraint given by equation (73);39 the Lagrangian for this policy

problem can be written as:

=t =
1P
i=0

�iEt

�
1

2

�
�2t+i + �x2t+i

�
+ �t+i (�t+i � �Et�t+i+1 � �xt+i � ut+i)

�
(75)

Clarida et al. (1999) showed that the policy that minimize (75) is given by a

commitment to a rule; nonetheless, this policy is not time-consistent. Woodford (1999,

2003) suggests to solve this problem by using a �timeless perspective�, where the

38For natural level we mean the level of output arising when prices are �exible.
39As common practice in literature, we assume that the Central Bank can directly control in�ation

as an instrument: thus, we can neglect equation (72) in the optimization problem.
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optimal policy rule, in each period, should be:

�t = �
�

�
(yt � yt�1) (76)

A shortcoming of monetary models based on equations (72) and (73) is that they

lack of empirical realism since in�ation is a persistent process and this inertia has

not negligible e¤ects on the dynamic properties of the model. In particular, a purely

forward-looking speci�cation for the NKPC fails to account for the e¤ects of persistence

on the dynamics of the model. Considering a hybrid version of (73), has implications

both for the welfare function form and, consequently, for the derivation of the optimal

policy rule (see Steinsson, 2003). Moreover, introducing persistence has important

e¤ects for the evaluation of the cost of a disin�ation.40

Several methods has been introduced in literature to embed the NKPC of a back-

ward term: we borrow from Sheedy (2007, 2010) a log-linear-economy representation

which departs from the standard Calvo mechanism assuming that a �rm has a higher

probability of changing its price the longer it has kept it unchanged. This price as-

sumption leads to a hybrid time-dependent Phillips curve exhibiting intrinsic inertia à

la Fuhrer and Moore (1995), as it embeds a backward-term for in�ation. Formally, our

pricing model implies a non-negative hazard function. It generalizes the Calvo price

setting, which emerges as a particular case when the hazard is �at.

A growing number of papers has been recently devoted to analyze the e¤ects of

a persistent NKPC on optimal monetary policy. Steinsson (2003) considers a NKPC

with rule of thumb á la Galí-Gertler (1999) and shows that, within this context, the

40Many papers study the cost of a disin�ation under in�ation persistence, see e.g. Fuhrer (1995)
and Ascari and Ropele (2012).
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Central Bank�s loss function should include also lagged terms for in�ation. Ascari

and Ropele (2007), analyze the implications for the optimal monetary policy when the

log-linearization of the system is taken around a positive steady state in�ation: their

�ndings are that the gains of a commitment are in�uenced by the level of trend-in�ation

and the degree of interest rate smoothing progressively increases as the assumed level

of trend-in�ation is raised.

We use the linear-quadratic (LQ) approach proposed by Rotemberg and Woodford

(1997) and further extended by, among others, Woodford (2002, 2003), Benigno and

Woodford (2003; 2005; 2012) to study the welfare e¤ects associated with intrinsic

in�ation persistence generated by a time-dependent pricing model. Speci�cally, we

derive a LQ model that is consistent with the assumption that pricing decisions depend

on the time spent from the last price reset, which in turn generates intrinsic in�ation

persistence, and study welfare e¤ects and policy implications of this micro-foundation

of in�ation inertia.

We extend Sheedy (2007) by deriving a consistent second-order approximation

of welfare. As said we follow Woodford�s (2003) approach. We assume that an

output or employment subsidy that o¤sets the distortion due to the market power

of monopolistically-competitive price-setters, so that the steady state under a zero-

in�ation policy involves an e¢ cient level of output. We consider an approximation

around an e¢ cient steady state to compare our result to those of Steinsson (2003),

who investigates an alternative model of intrinsic in�ation persistence under this as-

sumption.41

We use our welfare approximation to explore the nature of macro distortions induced

41The approach can be however generalized to the case of a distorted steady state (Benigno and
Woodford, 2005, 2012).
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by our time-dependent pricing model. Our approximation, in fact, makes explicit

how welfare costs are generated by time-dependent pricing adjustments. These costs

are distinct from the costs associated with relative price dispersion and consumption

�uctuations that appear in the standard New Keynesian model.

In the Calvo price setting, the probability of resetting a price is time-independent,

all �rms have the same probability of changing their prices independently of their

history, i.e. the time elapsed since their last spell. Distortions are only related to one

feature of the price setting mechanism, i.e. the (average) probability of resetting a

price, which is equal to the probability of individual �rms. Instead, our environment

is richer as distortions can be associated to di¤erent average probabilities, as in Calvo,

but also to di¤erent distributions of the probability of resetting price since this may

be not the same among �rms. In other words, our setup generalizes Calvo (1983)

and allow us to disentangle the distortions associated to di¤erent average from those

stemming from di¤erent distributions of the probability of resetting prices.

Moreover, we investigate optimal policy implications of time-dependent pricing set-

tings. We look at how di¤erent hazard rates a¤ects gains from commitment with

respect to discretion and compare our implications for optimal policy to those derived

from an alternative model for intrinsic in�ation persistence based a bounded-rational

behavior� obtained by Steinsson (2003) within the same LQ approach.

Steinsson (2003) considers a model under the assumption that a fraction of the pro-

ducers in the economy set their prices according to a rule of thumb, i.e. indexing to past

prices, which generates intrinsic in�ation persistence. As a result, he obtains a Phillips

curve that is a convex combination of a forward-looking term and a backward-looking

term. As long as the relative importance of the backward term relatively to the forward
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one increases, he �nd that recessions (expansions) are more persistent, gradual policies

prevail on immediate overshooting that characterizes the purely forward-looking case

under commitment, and commitment vs. discretion gains fall.

Clearly, as in our case, Steinsson�s (2003) results are speci�c on the way intrinsic

in�ation persistence is modeled; therefore, it is important to check them compared to

alternative formalizations. In contrast to Steinsson (2003), we �nd that commitment

and in�ation persistence are not in opposition. In a word with persistence, commitment

vs. discretion gains increases in in�ation inertia generated by a more asymmetric

distribution of reset probabilities among �rms conditional to the time elapsed since the

last spell.

The rest of the paper is organized as follows. Section 4.2 presents the economic setup

considered and explains how to embed a New Keynesian Phillips Curve with intrinsic

persistence by using positive hazard functions. Section 4.3 shows the derivation of the

welfare function when in�ation inertia is achieved via a reset price probability that is

time-dependent. In Section 4.4 we explore the nature of macro distortions induced by

our pricing model and its implications for the conduct of monetary policy. We also

analyze how a change in the hazard slope a¤ects the welfare gain of a commitment

over discretion. A �nal section concludes.

4.2 The economy

The core of the New Keynesian approach is price stickiness; i.e., a situation in which

the nominal price is resistant to change. The most common way to introduce it is the

Calvo staggered contracts model,42 where each �rm faces a sort of lottery for resetting
42Common alternatives include Rotemberg (1982) price model, sticky information, state-dependent

models. See Chapter 6 of Walsh�s (2010) textbook for details.
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price. In every period of time, each �rm has a constant probability of being able to

change its price. The alternative mechanism we consider here is instead a lottery where

the probability of resetting the price, de�ned by a hazard function, is a function of

time. Following Sheedy (2007, 2010), we assume that a �rm has a higher probability of

changing its price the longer it has kept it unchanged. Now, the �rm faces a probability

distribution over possible probabilities of resetting conditional to the time elapsed from

the last adjustment.

Formally, in order to derive the Phillips curve, we �rst need to specify the hazard

function, which is de�ned as the event rate at time h conditional on survival until time

h or later, where the event is �be able to reset the price.�The hazard function can be

written as:

� (h) = �p +
min(h�1;n)P

j=1

'p (j)

(
h�1Q
k=h�j

[1� � (k)]

)�1
; (77)

where � (h) is the probability to change a price which last reset was h periods ago; �p

is the initial value of the hazard, 'p (j) is its slope; n is the number of parameters that

control the slope, for n = 1 the slope is governed by only one parameter, 'p (j) = 'p.

Knowing (77), the representative �rm i chooses its price to maximize the pro�t, as

it enjoys monopoly power on the goods market, constrained by the total demand for its

product (i.e., Yt(i) =
�
Pt(i)
Pt

��"p
Yt, where

Pt(i)
Pt

is the relative price, Yt is the aggregate

demand, and "p �rm�s price elasticity). We assume that representative �rm has the

following production function: Yt(i) = AtNt(i)
1��, where labor (Nt) is the only factor

of production, At denotes the technology, and � 2 (0; 1). Formally, the representative
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�rm i solves

max
P �t (i)

1X
t=0

& tE0�
t

8<:Pt(i)
�
Pt(i)

Pt

��"p
Yt �Wt

"
1

At

�
Pt(i)

Pt

��"p
Yt

# 1
1��
9=; (78)

where & l =
lQ

h=1

(1� �h) with &0 = 1 represents the probability that a price remains

�xed for l periods (survival function) and � is the discount factor.

By assuming a competitive labor market, under very common assumptions in New

Keynesian framework, the solution of the problem (78) leads to the following log-linear

in�ation equation:

�t = 	1�t�1 + �	2Et�t+1 � �2	1Et+1�t+2 + �xt + ut (79)

where �t is the in�ation rate; is the xt output gap; ut is a cost push shock, modelled as

an AR(1) process. We always indicate deviations with lowercase letters. Coe¢ cients

in (79) are: 8>>>><>>>>:
	1 =

'p
(1��p)�'p[1��(1��p)]

;

	2 = 1 + (1� �)	1;

� =
(�p+'p)[1��(1��p)+�2'p]
(1��p)�'p[1��(1��p)]

�p;

with �p =
�
� + 
+�

1��
�

1��
1��+�"p , where �, 
 are parameters characterizing the representa-

tive consumer�s utility function (see (80), below).

Equation (79) is our Phillips curve. Coe¢ cient � measures its slope and also de-

pends on the hazard function parameters (�p, 'p). This Phillips curve captures the

intrinsic component of in�ation inertia, since it has a backward term. The negative

coe¢ cient attached to �t+2 must be interpreted as a reduction in the total degree of
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its forwardness. Equation (79) nests the standard New Keynesian Phillips curve as a

special case for 'p = 0 (�at hazard).

4.3 Welfare approximation

The welfare loss derives from a second-order Taylor approximation of the households

utility function and mainly depends on the form that takes the price dispersion. The

details of the approach developed by Rotemberg and Woodford (1997, 1999) are widely

discussed in Woodford (2003: Chapter 6), Galí (2008), Benigno and Woodford (2012).

In the derivation we follow Galí (2008), from whom we only di¤er in the price dispersion

evolution, which in our case relies on the use of time-dependent price setting with non-

constant hazard functions.

We assume a utility function taking the following separable form:

Ut =

�
C1��t

1� �
� N1+


t

1 + 


�
(80)

where Ct is consumption; � and 
 are parameters.

A second-order approximation of (80) is:

Ut � U ' UcY

�
yt +

1� �

2
y2t

�
+ UnN

�
nt +

1 + 


2
n2t

�
(81)

where � = �Ucc
Uc
Y , 
 = Unn

Un
N . Note to obtain (81), we have used the aggregate

resource constraint Ct = Yt.

By integrating the production function, Yt =
R 1
0
Yt(i)di = At

R 1
0
Nt(i)

1��di = AtN
1��
t ,
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we can manipulate the demand function of good i to obtain:

�
Yt
At

� 1
1��
Z 1

0

�
Pt(i)

Pt

��"p
1��

di| {z }
Dt

= Nt (82)

where Dt measures the degree of price dispersion.

Log-linearizing (82) around the steady state implies:

(1� �)nt = yt � at +
"p
2�

vari fpt(i)g (83)

since up to a second-order approximation (1� �) dt ' "p
2�
vari fpt(i)g, where � =

1��
1��+�"p .

As we consider an e¢ cient steady state, thus �Un
Uc
equals the marginal product of

labor in the steady state, (1� �)
�
Y
N

�
, by substituting (83) into (81), after some simple

algebraic manipulations, we obtain:

Ut � U

UcY
' �1

2

�
"p
�
vari fpt(i)g+

�
� +


 + �

1� �

�
x2t

�
+ t:i:p: (84)

where xt = yt � ynt denotes the output gap, ynt is the natural level of output; and t:i:p:

denotes the terms independent of policy. Then, as usual, we can express our welfare

function as follows:

W = �1
2
E0

1X
t=0

�t
�
"p
�
vari fpt(i)g+

�
� +


 + �

1� �

�
x2t

�
(85)

In order to specify our welfare criterion, we need to �nd an expression that relates

vari fpt(i)g to �t. In our framework, as shown by Sheedy (2007), the aggregate price
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level evolves as:

log pt(i) =
P1

h=0 �h logP
�
t�h (86)

where P �t stands for the reset price and �h denotes the share of �rms which last price

change was h periods ago. Thus, price level is an average of past reset prices weighted

by the share of �rms using such price at time t.

By making use of (86) and exploiting the properties of the variance, we can show

that the discounted sum of price dispersion evolves in the following way:

P1
t=0 �

tvari fpt(i)g =

P1
t=0 �

t
�
1��p
1+'p

�2t + �p'p�
2
t�1

�
�
1 + 'p � � (1� �p)

� �
�p + 'p

� ; (87)

the proof is provided in the Appendix E.

Once we have derived the price dispersion, we substitute (87) into (85) and obtain

our welfare measure:

W = �
1
2
E0

1X
t=0

�t
�
�2t + �2x

2
t + �1�

2
t�1
�

(88)

where 
, �1, and �2 are expressed as follows:


 =
"p
�

1

1� �
�
1��p
1+'p

� 1� �p�
1 + 'p

�2 �
�p + 'p

� ; (89)

�1 =

�
1 + 'p
1� �p

�
�p'p; (90)

�2 =
1




�
� +


 + �

1� �

�
: (91)

As for the Phillips curve, our welfare measure (88) encompasses that deriving from
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Calvo price setting for 'p = 0: in such a case the weight attached to backward in�ation

drops to zero.

4.4 Welfare analysis and optimal policy

4.4.1 Price-model features and distortions

In the standard Calvo pricing model, the source of distortions is the (average) proba-

bility of resetting prices, which is constant among �rms in each instant of time. Dis-

tortions and price duration are in fact mapped one-by-one to this probability. In other

words, in this setup, �rms are ex ante homogenous, facing the same probability of being

extracted in the Calvo�s lottery.

In our framework, we disentangle two sources of distortions stemming from the

average and the distribution of the probability of resetting prices. Here, di¤erently

from Calvo (1983), reset probability is not constant. Firms are ex ante heterogeneous,

as each faces a di¤erent probability of resetting according to the time elapsed since

the last reset.43 Thus, distortions are related to the average probability of changing

prices (as in Calvo model), but now they also depend on how the reset probability is

distributed among �rms.

The average probability of resetting prices (ARP ) can be written as:

ARP = �p + 'p (92)

A given average probability of changing prices can be obtained for di¤erent slopes

of the hazard function ('p). For instance, we can obtain three di¤erent scenarios

43Of course, two �rms who have reset at the same time have the same probability to re-adjust.

63



consistent with ARP = 0:3 associated to three di¤erent distributions of the reset

probability, as illustrated by the �gure below.

Figure 4 �Di¤erent distributions of the reset probability with the same mean.

All the panels of Figure 4 imply ARP = 0:3, but Panel (a) is built by assuming

'p = 0 (Calvo price model); in Panel (b) 'p = 0:1; in Panel (c) 'p = 0:25. It is clear

that in Panel (c) there is a greater dispersion in the reset probability, i.e. there is more

heterogeneity in the reset probability distribution. Similar �gures can be drawn for

di¤erent average probabilities. Given the average probability to adjust a price, we can

refer to the scenario (a) as Calvo; scenario (b) as the mid-dispersion case; (c) as the

high-dispersion case.

In order to study the welfare e¤ects of these two features of the price setting process,

we use numerical simulations based on a standard calibration of model parameters. We

set the discount factor (�) equal to 0:99. The labor share is 2=3 so we set � = 0:33.

We assume a net price mark-up of 20% setting "p = 6; we assume a log-linear utility

function by setting � = 1 and 
 = 2. The process governing the cost push shock
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is modeled as an AR(1) with a coe¢ cient equal to 0:5. Our qualitative results are

independent of the calibration.

Table 6 reports the welfare e¤ects.44 We consider di¤erent average probabilities and

di¤erent dispersions. For the sake of comparison, we consider the same monetary policy

rule in all cases.45 We express the welfare e¤ects in the more common form of welfare

losses, which are further normalized to the Calvo scenario with a reset probability equal

to 0:4.

Table 6 �Welfare cost of di¤erent price setting schemes
average reset probability hazard function slope ('p)

(ARP ) 0 0:1 0:25
0:4 1:000 1:417 2:291
0:3 1:769 2:631 4:641
0:25 2:259 3:438 6:418

The table shows that a decrease in the average reset probability induces more

distortions as in the traditional setup. Moreover, here distortions also increase in the

dispersion of the reset probability, due to a higher hazard slope. As the hazard becomes

steeper there is an increase of the variance of the output gap with respect to that of

in�ation.

The next subsection investigates how the two features of the price setting process

a¤ect the conduct of monetary policy under di¤erent assumptions about the policy

regime (discretion and commitment), and how they a¤ects the relative gains of the

latter on the former.
44The table is built by considering a transitory cost push shock. Thus it reports conditional welfare.
45We consider a policy consistent to a Taylor rule, which only responds to current in�ation by a

coe¢ cient equal to 1:5. The same results holds if optimal policy are instead considered. More details
are available upon request.
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4.4.2 Optimal policies

The Government problem consists in maximizing (88) subject to (79), conditional to

the policy regime. Formally, the Government�s problem at some point of time, here

taken (without loss of generality) to be t = 0, can be expressed as minimization of the

following Lagrangian expression:

min
f�t+jg+1j=0 , fyt+jg

+1
j=0

� E0
1P
j=0

�j
�
1

2

�
�2t+j + �1�

2
t+j�1 + �2x

2
t+j

�
+ (93)

+�t+j
�
�t+j �	1�t+j�1 � �	2�t+j+1 + �2	1�t+j+2 � �xt+j � ut+j

�	

where �t+j is the Lagrangian multiplier. Without loss of generality, we are considering

a welfare loss minimization instead of a welfare maximization.

Corresponding �rst order conditions are:

(1 + �1�)�t+j + �t+j �	1�Et+j�t+j+1 = 0 for j = 0 (94)

(1 + �1�)�t+j + �t+j �	1�Et+j�t+j+1 �	2�t+j�1 +	1�t+j�2 = 0 for j > 0 (95)

�2xt+j � ��t+j = 0 for j > 0 (96)

As it is well known, the system (94)-(96) leads to a dynamic inconsistency. At t = 0

the policymaker implements (94) and commits to act following (95) in future periods.

When t = 1 comes, it would be optimal to pursue again (94) rather than (95). Thus,

time-inconsistency arises as it is no longer optimal act as planned at t = 0.

Dynamic inconsistency does not a¤ect the decisions under discretion as the discre-

tionary regime is a process that presumes period-by-period re-optimization given the
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expectations. In this case the derivatives with respect to the terms in the Lagrangian

expression (93) involving expectations are all equal to zero. The discretionary solu-

tion is thus obtained from (94) and (96). By combining these �rst-order conditions to

eliminate �t, we obtain the following optimal policy rule:

�t = �
�2

�(1 + �1�)
(xt �	1�xt+1) (97)

The above expression says that in�ation has to respond to the current output gap,

but not to its past values, as in the textbook case; moreover, in�ation also reacts to

the discounted expected output gap (if 'p > 0). So equation (97) generalizes the well

known �lean against the wind�policy: If the hazard is not �at, expected output gap

should be also considered since the Phillips curve has an inertial component.

Woodford (2003) proposes to overcome dynamic inconsistency by implementing

an alternative regime known as �timeless perspective,�where the Government should

ignore (94). The idea is that optimal policy solves problem (93) �from some date

forward as being optimal from a timeless perspective, rather than from the perspective

of the particular time at which the policy is actually chosen� (Woodford, 2011; p.

744). In such a case, the solution is given by equations (95) and (96). Combining these

equations, we eliminate �t+j and obtain:

�t+j = �
�2

�(1 + �1�)
(xt+j �	1�Et+jxt+j+1 �	2xt+j�1 +	1xt+j�2) (98)

Again, as the Phillips curve has an inertial component, discounted expected output

gap should be considered. Moreover, the timeless perspective is characterized by the

fact that the Government, by reacting to the past output gap, a¤ects current in�ation
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expectations and obtain a more favorable current trade-o¤ between in�ation and out-

put. Thus, as the curve has two forward components, in order to manipulate future

expectations the Government rule now reacts to two lags of output gap; the di¤erent

signs are explained by the di¤erent e¤ects on the expectations (see (79)). If 'p = 0,

in�ation expectations at t+ 2 do not a¤ect the trade o¤ and 	1xt+j�2 drops to zero.

The impulse response functions to a cost push shock in the two regimes are depicted

in the Figure 5, where we consider three scenarios illustrated in Figure 4 (i.e., Calvo,

mid-dispersion and high dispersion under a common ARP equal to 0:3).

Figure 5 �Impulse response functions in the two policy regimes
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Considering discretion, the comparison among the three scenarios shows that in�a-

tion and output gap follow the same shapes. They only di¤er on a quantitative point

of view: a greater dispersion in the reset probability leads to a larger variability in both

in�ation and output gap. In the Calvo case we can observe lower variances. However,

this result does not depend on monetary policy e¢ cacy, but on the di¤erent degree of

distortions associated to the di¤erent scenarios� as we have shown before. The same

results are observed under commitment.

Following Steinsson (2003), it is interesting to compare the relative performance of

the two regimes. In our setup an increase in the dispersion of the reset price distribution

leads to more in�ation persistence. In the following table shows the relative gains on

discretion derived by implementing a timeless perspective regime. We consider di¤erent

slopes for the hazard function starting from Calvo ('p = 0) up to the high-dispersion

scenario ('p = 0:30). In all cases we keep �xed the average probability of changing

prices (APR) at 0:3. It is worth noticing that the in�ation intrinsic persistence grows

with 'p. Thus, the table below reports the gains associated to the commitment under

di¤erent degree of in�ation inertia.

Table 7 �Gains from commitment and in�ation inertia
hazard function slope ('p) 0 0:10 0:15 0:20 0:25 0:30
% gain from commitment 54:3 58:6 62:2 66:9 72:9 78:8

The greater 'p is, the higher the relative gain of commitment is. This results

di¤ers from Steinsson (2003), who �nds that gain increases in the degree of in�ation

persistence. In Steinsson (2003) in�ation inertia is introduced by a rule-of thumb, and

results come out from the fact that as the backward component of the Phillips curve

increases, the forward-looking one falls reducing the gain from commitment. In our
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setup the interaction is much complex as intrinsic in�ation persistence is micro-founded

and the e¤ects on the di¤erent components of the Phillips curve are non-linear. The

relative e¤ects of in�ation inertia on the optimal policy regimes are thus not general

but they depend on the way intrinsic in�ation persistence is introduced.

4.5 Conclusions

In this chaprer, we derived a linear-quadratic model that is consistent with intrinsic

in�ation persistence. In�ation inertia is micro-founded assuming that the probability

to update a price of each �rm is function of the time, more speci�cally we assumed

that �rms�pricing decisions depend on the time spent from the last price reset. By

our welfare approximation, we explored the nature of macro distortions induced by our

pricing model and its implications for the optimal monetary policy under discretion

and (timeless perspective) commitment.

We disentangled two sources of distortions by considering both the average and the

distribution of the probability of resetting prices, showing how welfare falls in the former

as in Calvo price setup, but also in the latter. The greater distortions also imply more

variability when optimal policy is introduced, but do not a¤ect qualitatively monetary

responses under commitment or discretion. Regarding the central banker�s conduct, in

both regimes, monetary authorities should take account of expected future output gaps

because of its persistence. Furthermore, in the commitment regime, monetary policy

should respond to an additional lagged term of the output gap to optimally a¤ect

expectations and thus to improve the current trade-o¤ between in�ation and output�

since now expectations a¤ect the current state of the economy for two periods.

Finally, by comparing the welfare under di¤erent policy regimes, we found that
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the relative e¤ects of in�ation inertia on the optimal policy regimes are di¤erent from

those stemming from alternative models of in�ation persistence based on rule-of-thumb

assumptions or indexation mechanisms. In our setup the relative gain of commitment

over discretion increase in the degree of in�ation persistence as� once intrinsic in�ation

persistence is micro-founded� the interaction between the di¤erent components of the

Phillips curve is more complex. Therefore, relative e¤ects of in�ation inertia on the

optimal policy regimes are at least not general, but they depend on the way intrinsic

in�ation persistence is introduced.
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Appendix A �Time-dependent Wage Phillips curve
derivation

In what follows we show the complete derivation of the time-dependent Wage Phillips

curve (44) for the general case n = 1.

A.1 Wage in�ation dynamics

Let us divide equation (37) by Wt getting:

1 =
1

Wt

 1X
l=0

�lW
�1�"w
t�l

! 1
1�"w

(99)

Now we log-linearize46 (36) and (99) around a steady-state with zero wage in�ation

�w = 1, MRS = W
P�w

and W
�

W
= $ = 1.

We begin from equation (36):

W
�
+W

�
w�t=

�
�w

�P1
�=t &��t�

��t W
P�w

P
�

P1
�=t &��t�

��t

�
+ W

P�w

P1
�=tmrs� jt

�wP
P1
�=t &��t�

��tP1
�=t &��t�

��t +

+

P1
�=t &��t�

��tP�w
W
P�wP1

�=t &��t�
��t p�+ log �w

P1
�=t &��t�

��t W
P�w

�wPP1
�=t &��t�

��t

dividing by W
�
we get

w�t =

P1
�=t &��t�

��tP1
�=t &��t�

��tmrs� jt +

P1
�=t &��t�

��tP1
�=t &��t�

��tp� + log �w

46Variables with the bar denote steady-state values. Small-caps letters denote the log-deviation
from the steady-state.
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Let log�w = �

w�t = �+
1X
�=t

�
&��t�

��tP1
�=t &��t�

��t

��
mrs� jt + p�

�
(100)

we know that mrs� jt = mrs� + 

�
n� jt � n�

�
, hence:

mrs� jt = mrs� � "w
 (w
�
t � w� )

As a consequence (100) becomes:

w�t=
P1

�=t

�
&��t�

��tP1
�=t &��t�

��t

�
[mrs� � "w
w

�
t + "w
w� + p� + �]

"w
w
�
t + w�t =
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�=t

�
&��t�
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��t

�
[mrs� + "w
w� + p� + �]

w�t =
P1

�=t

�
&��t�

��tP1
�=t &��t�

��t

� h
mrs�+"w
w�+p�+�

1+"w


i
Moreover, knowing that mrs� = w� � p� � �w� and assuming that �

w
� denotes the

log-deviation of the wage mark-up from its steady-state, we get:

w�t =
P1

�=t

�
&��t�

��tP1
�=t &��t�

��t

� h
w��p���w� +"w
w�+p�

1+"w


i

w�t =
P1

�=t

�
&��t�

��tP1
�=t &��t�

��t

�
1+"w

1+"w


w� � 1
1+"w


�w�

Let t+ i = � , then:

w�t =
1X
i=0

 
�i& iP1
j=0 �

j&j

!�
wt+i � �wt+i

�
(101)
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We now switch to equation (99), it can be rewritten as follows:

1 = �0$
1�"w
t + �1

�
W �
t�1
Wt

�1�"w
+ �2

�
W �
t�2
Wt
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�
W �
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+ : : :
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(102)

Equation (102) can be furtherly rewritten as:

1 =
1X
i=0

�l

�
W �

t�l

Wt�l

�1�"w  l�1Y
h=0

�w
"�1

t�h

!

1 = �0

�
W �
t

Wt

�1�"w
+ �1

�
W �
t�1

Wt�1

�1�"w � Wt

Wt�1

�"w�1
+ �2

�
W �
t�2

Wt�2

�1�"w � Wt

Wt�1

Wt�1

Wt�2

�"w�1
+ : : :

1 = �0

�
W �
t

Wt

�1�"w
+ �1

�
W �
t�1
Wt

�1�"w
+ �2

�
W �
t�2
Wt

�1�"w
+ �3

�
W �
t�3
Wt

�1�"w
+ : : :

74



Log-linearizing around the deterministic steady-state given by �w = 1; $ = W
�

W
= 1

we get:
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l=0 �l + �0(1� "w)
1
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2W

�
Wwt � �1(1� "w)

1

W
2W

�
Wwt � �2(1� "w)

1
�W 2

1

W
2W

�
Wwt � : : :

since 1 =
P1

l=0 �l, then:
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1X
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�lw
�
t�l

wt =
1X
l=0

�lw
�
t�l (103)

A.2 Wage Phillips curve

By exploiting the recursive parametrization of the hazard and survival functions, equa-

tions (101) and (103) can be rewritten in alternative way as follows:

w�t =
1X
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�i& iP1
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1
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by using equation (25):
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we now group in the following way:
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As we can see, 2nd and 3rd row of the latter equation are equal to �(1��)Etw�t+1;

4th row is equal to (��2'1Etw�t+2); 5th row is equal to (��3'2Etw�t+3) and so on.

Thus, we can rewrite this equation as:
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Recursive parametrization of the hazard function implies a recursion for the sta-

tionary distribution of the duration of wage stickiness f�lg1l=0:
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Finally combining equation (104) and (105) we get an expression for a hybrid wage

Phillips curve47:
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47For the sake of simplicity we use n = 1, where n is the number of parameters which control the
slope of the hazard function.
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�
1� � (1� �) + �2'1

�
wt + (1� �)wt�1+

+'1� (1� �)wt�1 � '1wt�2 + [� (1� �)]wt+1 + �2'1 (1� �)wt+1 � �2'1wt+2+

� (�+ '1)
�
1� � (1� �) + �2'1

�
�w�

w
t

wt = �� (1� �)2wt � �2'21wt + � [1� � (1� �)]wt + ��2'1wt + '1 [1� � (1� �)]wt + �2'21wt+

+(1� �)wt�1 + '1� (1� �)wt�1 � '1wt�2 + [� (1� �)]wt+1 + �2'1 (1� �)wt+1 � �2'1wt+2�

� (�+ '1)
�
1� � (1� �) + �2'1

�
�w�

w
t

wt � '1 [1� � (1� �)]wt � (1� �)wt�1 � '1� (1� �)wt�1 � �wt = �� (1� �)2wt+

��� (1� �)wt + ��2'1wt � '1wt�2 + [� (1� �)]wt+1 + �2'1 (1� �)wt+1 � �2'1wt+2+

� (�+ '1)
�
1� � (1� �) + �2'1

�
�w�

w
t
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adding and subtracting '1wt�1:

f(1� �)� '1 [1� � (1� �)]gwt � (1� �)wt�1 � '1� (1� �)wt�1 + '1wt�1 = �� (1� �)2wt�

��� (1� �)wt + ��2'1wt � '1wt�2 + '1wt�1 + [� (1� �)]wt+1 + �2'1 (1� �)wt+1�

��2'1wt+2 � (�+ '1)
�
1� � (1� �) + �2'1

�
�w�

w
t

f(1� �)� '1 [1� � (1� �)]gwt � f(1� �)� '1 [1� � (1� �)]gwt�1 = '1 (wt�1 � wt�2)�

�� (1� �)2wt � �� (1� �)wt + ��2'1wt + [� (1� �)]wt+1 + �2'1 (1� �)wt+1 � �2'1wt+2�

� (�+ '1)
�
1� � (1� �) + �2'1

�
�w�

w
t

f(1� �)� '1 [1� � (1� �)]g �wt = '1�
w
t�1 + [� (1� �)]wt+1 + �2'1 (1� �)wt+1 � �2'1wt+2+

� (�+ '1)
�
1� � (1� �) + �2'1

�
�w�

w
t �� (1� �)2wt � �� (1� �)wt + ��2'1wt| {z }

(������2'1�)(�wt)

f(1� �)� '1 [1� � (1� �)]g �wt = '1�
w
t�1 + �wt+1 � ��wt+1 � �2'1�wt+1+

�
�
� � �� � �2'1�

�
wt � (�+ '1)

�
1� � (1� �) + �2'1

�
�w�

w
t +

��2'1wt+2 + �2'1wt+1| {z }
��2'1�wt+2

Finally we obtain:

�wt =
'1

(1��)�'1[1��(1��)]
�wt�1 +

������2'1�
(1��)�'1[1��(1��)]

Et�
w
t+1�

� �2'1
(1��)�'1[1��(1��)]

�wt+2 �
(�+'1)[1��(1��)+�2'1]
(1��)�'1[1��(1��)]

�w�
w
t

Let  = '1
(1��)�'1[1��(1��)]

; �w =
(�+'1)[1��(1��)+�2'1]
(1��)�'1[1��(1��)]

�w.

80



Since ������2'1�
(1��)�'1[1��(1��)]

= � [1 + (1� �) ], then:

�wt =  �wt�1 + � [1 + (1� �) ]Et�
w
t+1 � �2 Et�

w
t+2 � �w�

w
t (106)

If we use a number of parameters equal to n the wage Phillips curve becomes:

�wt =
nX
l=1

 l�
w
t�l +

n+1X
l=1

�lEt�
w
t+l � �w�

w
t (107)

where:

 l =
'l +

Pn
h=l+1 'h

h
1� � (1� �) +

Ph�1
k=1 �

k+1'k

i
(1� �)�

Pn
h=1 'h

h
1� � (1� �) +

Ph�1
k=1 �

k+1'k

i

�1 = �
(1� �)�

Pn
h=1 �

h'h

�
�+

Ph�1
k=1 'k

�
(1� �)�

Pn
h=1 'h

h
1� � (1� �) +

Ph�1
k=1 �

k+1'k

i

�l+1 = ��l+1
'l +

Pn
h=l+1 �

h�1'h

�
�+

Ph�1
k=1 'k

�
(1� �)�

Pn
h=1 'h

h
1� � (1� �) +

Ph�1
k=1 �

k+1'k

i

�w =
�w (�+

Pn
h=1 'h)

�
1� � (1� �) +

Pn
h=1 �

h+1'h
�

(1� �)�
Pn

h=1 'h

h
1� � (1� �) +

Ph�1
k=1 �

k+1'k

i
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Appendix B �Robustness test

In this appendix we provide many robustness test for the estimation showed in Section

3:3. We test if our results, both for the hazard coe¢ cients and the model comparison,

are robust to change in the time series used. In particular, we use several measures for

the nominal wage, GDP de�ator and di¤erent �ltering method. Moreover, we estimate

two alternative speci�cations of our baseline model, by considering in one case an IS

curve with no persistence, i.e. h = 0, in the other case a Taylor rule characterized by

an AR(2) interest rate. In what follows we consider the same parameters calibrations

and priors used along Section 3:3.

B.1 Alternative time series

For the nominal wage we consider three alternative measures: Average hourly earnings

of production and nonsupervisory employees, Compensation per hour (Business sector),

Hourly earnings (manufacturing sector). For the GDP de�ator we consider the Implicit

price de�ator for the nonfarm business sector. Time series for both output and interest

rate are the same used in Section 3:3. As usual the real wage is obtained by dividing

nominal wage by the GDP de�ator. Thus, we are able to build seven di¤erent samples

as listed below:

1. SMPL1: nominal wage=average hourly earnings; de�ator=GDP implicit price

de�ator (1967:1 - 2008:4).

2. SMPL2: nominal wage=compensation per hour business sector; de�ator=GDP

implicit price de�ator (1960:1 - 2008:4).
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3. SMPL3: nominal wage=hourly earnings manufacturing; de�ator=GDP implicit

price de�ator (1960:1 - 2008:4).

4. SMPL4: nominal wage=compensation per hour nonfarm business sector; de�a-

tor=implicit price de�ator nonfarm business sector (1960:1 - 2008:4).

5. SMPL5: nominal wage=average hourly earnings; de�ator=implicit price de�ator

nonfarm business sector (1967:1 - 2008:4).

6. SMPL6: nominal wage=compensation per hour business sector; de�ator=implicit

price de�ator nonfarm business sector (1960:1 - 2008:4).

7. SMPL7: nominal wage=hourly earnings manufacturing; de�ator=implicit price

de�ator nonfarm business sector (1960:1 - 2008:4).

In Table 8 we report the Bayesian estimation of the hazard parameter for each

sample considered both for the entire period (full) 1960:1 - 2008:4 and the Great Mod-

eration (GM) 1982:1 - 2008:4.

Table 8 �Posterior mean estimation for di¤erent samples
SMPL1 SMPL2 SMPL3 SMPL4 SMPL5 SMPL6 SMPL7
full GM full GM full GM full GM full GM full GM full GM

�p 0.01 0.04 0.02 0.06 0.02 0.05 0.01 0.04 0.01 0.04 0.01 0.05 0.01 0.04
'p 0.17 0.11 0.19 0.13 0.17 0.12 0.23 0.19 0.21 0.12 0.22 0.19 0.20 0.15
�w 0.16 0.14 0.12 0.15 0.14 0.15 0.15 0.17 0.20 0.16 0.14 0.17 0.17 0.16
'w 0.14 0.10 0.25 0.25 0.17 0.16 0.23 0.24 0.13 0.09 0.23 0.24 0.15 0.15

Table 8 shows that our results are invariant to the time series used and that positive

hazard function still holds also after the Great Moderation. In Table 9 we show the
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results of the model comparison based on the Bayes factors, for each sample considered.

For all the samples our model clearly outperforms the alternatives considered.

Table 9 - Log-marginal data densities (ML) and Bayes factors (BF)
BASE BASE(non-info) EHL_IND GG

DB1:
ML 3182:1 3179:0 3153:7 3151:6
BF exp [�3:1] exp [�28:3] exp [�30:4]

DB2:
ML 3609:0 3605:9 3560:0 3554:6
BF exp [�3:1] exp [�49:0] exp [�54:4]

DB3:
ML 3702:9 3699:9 3668:4 3663:8
BF exp [�3:0] exp [�34:5] exp [�39:1]

DB4:
ML 3503:2 3500:6 3465:0 3461:4
BF exp [�2:6] exp [�38:2] exp [�41:8]

DB5:
ML 3083:8 3081:7 3059:0 3056:7
BF exp [�2:1] exp [�24:8] exp [�27:1]

DB6:
ML 3496:2 3493:9 3456:8 3452:3
BF exp [�2:3] exp [�39:4] exp [�43:9]

DB7:
ML 3578:8 3576:5 3549:3 3545:8
BF exp [�2:3] exp [�29:5] exp [�33:0]

B.2 Alternative data �ltering

We further test if our result are robust to an alternative method to extract the cyclical

component. In Table 10 we show our estimations for data detrended by using the full-

sample asymmetric �lter proposed by Christiano and Fitzgerald (2003). Parameters

calibrations and priors are the same used in Section 3:3.

84



Table 10 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (Great Moderation)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.289 0.743 1.937 1.371 0.584 2.075

 Gamma 2.0 0.375 2.523 1.980 2.964 2.278 1.693 2.734
h Beta 0.6 0.2 0.911 0.868 0.948 0.906 0.861 0.951
�� Normal 1.5 0.25 1.417 1.206 1.625 1.884 1.532 2.206
�x Normal 0.125 0.05 0.201 0.143 0.262 0.151 0.081 0.230
�r Beta 0.6 0.2 0.817 0.785 0.848 0.852 0.820 0.881
�p Beta 0.132 0.1 0.023 0.001 0.050 0.067 0.007 0.138
'p Normal 0.222 0.2 0.185 0.141 0.231 0.135 0.047 0.205
�w Beta 0.318 0.1 0.124 0.068 0.168 0.162 0.090 0.233
'w Normal 0.126 0.2 0.235 0.205 0.271 0.248 0.207 0.290
�a Beta 0.5 0.2 0.798 0.727 0.869 0.839 0.771 0.896
�g Beta 0.5 0.2 0.784 0.739 0.830 0.802 0.745 0.869
�� Beta 0.5 0.2 0.846 0.786 0.909 0.853 0.787 0.949
�a Inv. Gamma 0.01 2 0.019 0.012 0.026 0.013 0.008 0.017
�g Inv. Gamma 0.01 2 0.055 0.040 0.068 0.046 0.031 0.063
�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.001 0.001 0.002
�� Inv. Gamma 0.01 2 0.020 0.013 0.027 0.023 0.012 0.033

It is clear as the estimated parameters do not change signi�cantly we when consider

an alternative detrending method. The table below shows that the results of the model

comparison provided in Section 3.4 are robust to a di¤erent �lter.

Table 11 - Log-marginal data densities and Bayes factors for di¤erent models
Model Log-marginal data density Bayes factor vs. BASE
BASE 3616:4
BASE (non-info) 3614:3 exp [�2:1]
EHLind 3571:2 exp [�45:2]
GG 3566:3 exp [�50:1]
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B.3 Di¤erent model speci�cations

In what follows we provide estimations for two di¤erent model speci�cations: in the

�rst case we assume a model without persistence in the IS curve (i.e. h = 0), whereas

in the second case we consider a Taylor rule with an interest rate that follows an AR(2)

process.

B.3.1 Model without persistence

We test the robustness of our results to a di¤erent speci�cation of the IS curve, assuming

that there is no consumption habit (i.e. h = 0). The IS curve takes the following form:

yt = Etyt+1 �
1

�

�
it � Et�

p
t+1 + Etgt+1 � gt

�
(108)

Table 12 provides the results of our estimation for both the full sample and the

Great Moderation sub-sample.

Also in this case the hazard function for both the Phillips curves speci�cations is

upward sloping and this result still holds after the Great Moderation.

86



Table 12 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (Great Moderation)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 3.734 2.897 4.612 3.394 2.521 4.317

 Gamma 2.0 0.375 2.791 2.264 3.301 2.507 1.979 3.095
�� Normal 1.5 0.25 1.482 1.280 1.672 1.912 1.610 2.179
�x Normal 0.125 0.05 0.228 0.157 0.282 0.168 0.107 0.235
�r Beta 0.6 0.2 0.740 0.701 0.772 0.788 0.752 0.824
�p Beta 0.132 0.1 0.014 0.001 0.030 0.046 0.001 0.091
'p Normal 0.222 0.2 0.294 0.266 0.326 0.240 0.188 0.297
�w Beta 0.318 0.1 0.208 0.148 0.264 0.265 0.173 0.381
'w Normal 0.126 0.2 0.278 0.257 0.301 0.258 0.218 0.294
�a Beta 0.5 0.2 0.549 0.442 0.676 0.713 0.623 0.809
�g Beta 0.5 0.2 0.875 0.848 0.900 0.892 0.858 0.925
�� Beta 0.5 0.2 0.836 0.769 0.899 0.828 0.751 0.917
�a Inv. Gamma 0.01 2 0.015 0.012 0.020 0.010 0.008 0.013
�g Inv. Gamma 0.01 2 0.033 0.027 0.039 0.027 0.021 0.033
�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.002 0.001 0.002
�� Inv. Gamma 0.01 2 0.007 0.006 0.009 0.010 0.007 0.013

In the table below we report the results of the model comparison, when no habit

persistence in assumed. Our model still clearly outperforms all the alternative consid-

ered.

Table 13 - Log-marginal data densities and Bayes factors for di¤erent models
Model Log-marginal data density Bayes factor vs. BASE
BASE 3473:9
BASE (non-info) 3470:3 exp [�3:6]
EHLind 3409:3 exp [�64:6]
GG 3403:4 exp [�70:5]
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B.3.2 Taylor rule AR(2)

Here we assume that the Taylor rule is characterized by an interest rate that follows

an AR(2) stationary process:

it = �1rit�1 + �2rit�2 + (1� �1r � �2r) (���
p
t + �xyt) + �t (109)

Table 14 provides the results of our estimation for both the full sample and the

Great Moderation sample.

Table 14 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (Great Moderation)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.180 0.677 1.726 1.238 0.598 1.865

 Gamma 2.0 0.375 2.599 2.093 3.036 2.358 1.833 2.864
h Beta 0.6 0.2 0.913 0.879 0.949 0.918 0.882 0.954
�� Normal 1.5 0.25 1.424 1.194 1.621 1.827 1.513 2.100
�x Normal 0.125 0.05 0.217 0.150 0.274 0.171 0.095 0.238
�1r Beta 0.6 0.2 0.751 0.689 0.814 0.802 0.746 0.854
�2r Beta 0.5 0.2 0.063 0.011 0.115 0.054 0.007 0.098
�p Beta 0.132 0.1 0.017 0.001 0.035 0.053 0.001 0.106
'p Normal 0.222 0.2 0.200 0.166 0.232 0.149 0.070 0.229
�w Beta 0.318 0.1 0.139 0.094 0.198 0.155 0.083 0.220
'w Normal 0.126 0.2 0.226 0.187 0.258 0.239 0.192 0.285
�a Beta 0.5 0.2 0.786 0.717 0.860 0.821 0.758 0.900
�g Beta 0.5 0.2 0.777 0.726 0.824 0.801 0.726 0.858
�� Beta 0.5 0.2 0.801 0.728 0.858 0.795 0.708 0.876
�a Inv. Gamma 0.01 2 0.020 0.014 0.028 0.015 0.010 0.020
�g Inv. Gamma 0.01 2 0.053 0.040 0.068 0.051 0.033 0.068
�� Inv. Gamma 0.01 2 0.002 0.002 0.002 0.001 0.001 0.002
�� Inv. Gamma 0.01 2 0.022 0.014 0.029 0.030 0.015 0.046
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Assuming an AR(2) has not signi�cant implications on the slope of the hazard

functions that remains stricly positive; moreover, as showed in the table below, also

under this speci�cation, the Bayes factor still strongly favors our model.

Table 15 - Log-marginal data densities and Bayes factors for di¤erent models
Model Log-marginal data density Bayes factor vs. BASE
BASE 3597:8
BASE (non-info) 3595:2 exp [�2:6]
EHLind 3555:9 exp [�41:9]
GG 3551:2 exp [�46:6]
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Appendix C�Bayesian estimation for di¤erent coun-

tries

Along this appendix we provide all details and results of the Bayesian estimations

performed in Section 3:5. For all the countries we considered quarterly data and

the time series used come from FRED database maintained by the Federal Reserve

Bank of St. Louis. All the variables has been treated as explained in Section 3:3:1.

Parameters calibrations and priors are the same used for the U.S. estimation, except

for the parameters de�ning the hazard function. We assigned to �p and �w a Beta

distribution centered on 0:1, with standard deviation 0:2; for 'p and 'w we assume a

Normal distribution with mean 0:15 and standard deviation equal to 0:2.

C.1 Australia

The sample considered covers the period 1980:1 - 2008:4; for the smaller sample we

consider 1994:1 - 2008:4, as the new monetary regime, identi�ed by the in�ation tar-

geting, started in the �rst quarter of 1994. The following time series has been used for

the estimation: the GDP by Expenditure in Constant Prices: Total Gross Domestic

Product is used as measure of the output; the Interbank Rates is used for the nominal

interest rate. Price in�ation is measured using the GDP implicit price de�ator taken

in log-di¤erence. Real wage is obtained dividing the nominal wage, measured by the

hourly wage rate for all activities, by the GDP implicit price de�ator. In Table 16 we

report the estimated parameters both for the full sample and for the in�ation targeting

sub-sample.
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Table 16 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (In�ation Targeting)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.406 0.798 2.022 1.230 0.623 1.686

 Gamma 2.0 0.375 2.944 2.299 3.581 2.491 1.989 3.041
h Beta 0.6 0.2 0.881 0.825 0.931 0.926 0.851 0.977
�� Normal 1.5 0.25 1.326 1.107 1.560 1.343 1.050 1.584
�x Normal 0.125 0.05 0.134 0.067 0.216 0.099 0.029 0.190
�r Beta 0.6 0.2 0.812 0.771 0.857 0.875 0.828 0.919
�p Beta 0.2 0.1 0.059 0.010 0.106 0.094 0.024 0.163
'p Normal 0.15 0.2 0.267 0.212 0.318 0.233 0.150 0.318
�w Beta 0.2 0.1 0.208 0.119 0.282 0.295 0.213 0.367
'w Normal 0.15 0.2 0.249 0.215 0.283 0.168 0.103 0.226
�a Beta 0.5 0.2 0.403 0.229 0.577 0.615 0.442 0.786
�g Beta 0.5 0.2 0.766 0.708 0.833 0.730 0.632 0.840
�� Beta 0.5 0.2 0.777 0.664 0.886 0.887 0.826 0.947
�a Inv. Gamma 0.01 2 0.062 0.032 0.087 0.048 0.022 0.070
�g Inv. Gamma 0.01 2 0.046 0.031 0.059 0.043 0.019 0.062
�� Inv. Gamma 0.01 2 0.002 0.002 0.003 0.001 0.001 0.001
�� Inv. Gamma 0.01 2 0.022 0.013 0.032 0.011 0.006 0.016

C.2 United Kingdom

The sample considered covers the period 1975:1 - 2008:4; UK switched to an in�ation

targeting regime since 1992:4, thus we consider a smaller sample ranging from 1992:4

- 2008:4. The following time series has been used for the estimation: the GDP by

Expenditure in Constant Prices: Total Gross Domestic Product is used as measure of

the output; the Treasury Bills is used for the nominal interest rate. Price in�ation is

measured using the Consumer price index for all items taken in log-di¤erence. Real

wage is obtained dividing the nominal wage, measured by the hourly earnings, by the

CPI. In the table below we report the results of our estimation.
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Table 17 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (In�ation Targeting)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.475 0.808 2.305 1.319 0.637 1.916

 Gamma 2.0 0.375 3.269 2.570 3.953 3.140 2.380 3.798
h Beta 0.6 0.2 0.961 0.936 0.983 0.903 0.857 0.960
�� Normal 1.5 0.25 1.152 1.011 1.289 1.607 1.351 1.895
�x Normal 0.125 0.05 0.074 -0.006 0.144 0.059 -0.025 0.144
�r Beta 0.6 0.2 0.896 0.873 0.923 0.876 0.841 0.911
�p Beta 0.2 0.1 0.057 0.013 0.112 0.070 0.019 0.115
'p Normal 0.15 0.2 0.224 0.148 0.284 0.195 0.132 0.265
�w Beta 0.2 0.1 0.278 0.217 0.347 0.231 0.156 0.312
'w Normal 0.15 0.2 0.139 0.097 0.191 0.170 0.118 0.223
�a Beta 0.5 0.2 0.904 0.845 0.956 0.818 0.715 0.912
�g Beta 0.5 0.2 0.839 0.771 0.903 0.818 0.742 0.885
�� Beta 0.5 0.2 0.925 0.860 0.976 0.918 0.855 0.981
�a Inv. Gamma 0.01 2 0.031 0.015 0.042 0.029 0.015 0.044
�g Inv. Gamma 0.01 2 0.127 0.080 0.192 0.051 0.031 0.071
�� Inv. Gamma 0.01 2 0.002 0.002 0.003 0.001 0.001 0.002
�� Inv. Gamma 0.01 2 0.023 0.014 0.031 0.009 0.004 0.013

C.3 France

The sample considered covers the period 1970:1 - 2008:4; France joined the European

Monetary Union in 1999:1, thus we consider a smaller sample ranging from 1999:1

- 2008:4. The following time series has been used for the estimation: the GDP by

Expenditure in Constant Prices: Total Gross Domestic Product is used as measure of

the output; the Treasury Bills is used for the nominal interest rate. Price in�ation is

measured using the Consumer price index for all items taken in log-di¤erence. Real

wage is obtained dividing the nominal wage, measured by the hourly earnings, by the

CPI. Table 18 provides the results of the estimation both for the full sample and for
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the European Monetary Union (EMU) sub-sample.

Table 18 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (EMU)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.488 0.744 2.133 1.080 0.491 1.665

 Gamma 2.0 0.375 2.938 2.182 3.528 2.368 1.828 3.031
h Beta 0.6 0.2 0.948 0.918 0.977 0.914 0.851 0.988
�� Normal 1.5 0.25 1.059 0.957 1.174 1.224 0.980 1.435
�x Normal 0.125 0.05 0.136 0.069 0.206 0.104 0.043 0.177
�r Beta 0.6 0.2 0.898 0.879 0.916 0.837 0.770 0.896
�p Beta 0.2 0.1 0.071 0.017 0.114 0.104 0.033 0.178
'p Normal 0.15 0.2 0.124 0.074 0.184 0.081 -0.002 0.162
�w Beta 0.2 0.1 0.144 0.085 0.193 0.204 0.134 0.288
'w Normal 0.15 0.2 0.163 0.111 0.213 0.075 0.009 0.158
�a Beta 0.5 0.2 0.829 0.756 0.899 0.765 0.624 0.908
�g Beta 0.5 0.2 0.825 0.773 0.869 0.830 0.754 0.913
�� Beta 0.5 0.2 0.784 0.712 0.855 0.905 0.849 0.966
�a Inv. Gamma 0.01 2 0.042 0.027 0.058 0.089 0.025 0.144
�g Inv. Gamma 0.01 2 0.068 0.040 0.096 0.040 0.022 0.064
�� Inv. Gamma 0.01 2 0.001 0.001 0.001 0.001 0.001 0.001
�� Inv. Gamma 0.01 2 0.026 0.017 0.035 0.010 0.005 0.015

C.4 Germany

The model is estimated for the period 1973:1 - 2008:4; a sub-sample is estimated

considering the European Monetary Union ranging from 1999:1 - 2008:4. We use the

following time series for the estimation: the GDP by Expenditure in Constant Prices:

Total Gross Domestic Product is used as measure of the output; the Interbank Rates

is used for the nominal interest rate. Price in�ation is measured using the Consumer

price index for all items taken in log-di¤erence. Real wage is obtained dividing the
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nominal wage, measured by the hourly earnings, by the CPI. The table below shows

our estimated parameters for both the samples considered.

Table 19 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (EMU)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.093 0.507 1.718 1.018 0.511 1.630

 Gamma 2.0 0.375 2.714 2.185 3.219 1.979 1.450 2.470
h Beta 0.6 0.2 0.921 0.891 0.961 0.868 0.805 0.935
�� Normal 1.5 0.25 1.339 1.098 1.606 1.442 1.107 1.727
�x Normal 0.125 0.05 0.184 0.127 0.250 0.133 0.061 0.197
�r Beta 0.6 0.2 0.810 0.771 0.850 0.843 0.791 0.908
�p Beta 0.2 0.1 0.042 0.008 0.075 0.083 0.024 0.156
'p Normal 0.15 0.2 0.256 0.213 0.297 0.183 0.109 0.265
�w Beta 0.2 0.1 0.193 0.146 0.255 0.206 0.124 0.281
'w Normal 0.15 0.2 0.233 0.202 0.262 0.184 0.123 0.254
�a Beta 0.5 0.2 0.489 0.353 0.628 0.620 0.438 0.803
�g Beta 0.5 0.2 0.816 0.765 0.864 0.837 0.761 0.917
�� Beta 0.5 0.2 0.829 0.758 0.907 0.896 0.837 0.966
�a Inv. Gamma 0.01 2 0.038 0.022 0.051 0.041 0.021 0.064
�g Inv. Gamma 0.01 2 0.051 0.036 0.068 0.039 0.020 0.057
�� Inv. Gamma 0.01 2 0.001 0.001 0.002 0.001 0.001 0.001
�� Inv. Gamma 0.01 2 0.011 0.008 0.015 0.008 0.004 0.011

C.5 Italy

The model is estimated for the period 1985:1 - 2008:4; a sub-sample is estimated

considering the European Monetary Union ranging from 1999:1 - 2008:4. We use the

following time series for the estimation: the GDP by Expenditure in Constant Prices:

Total Gross Domestic Product is used as measure of the output; the Treasury Bills

is used for the nominal interest rate. Price in�ation is measured using the Consumer
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price index for all items taken in log-di¤erence. Real wage is obtained dividing the

nominal wage, measured by the hourly earnings, by the CPI. Table 20 provides the

results of our estimation.

Table 20 �Prior and posterior distributions
Prior distribution Posterior distribution Posterior distribution

(full sample) (EMU)
Density Mean St. Dev. Mean 5% 95% Mean 5% 95%

� Gamma 1.0 0.375 1.329 0.531 2.027 1.150 0.590 1.718

 Gamma 2.0 0.375 2.617 2.083 3.174 2.424 1.837 3.093
h Beta 0.6 0.2 0.948 0.920 0.975 0.926 0.868 0.974
�� Normal 1.5 0.25 1.742 1.506 2.042 1.666 1.370 1.972
�x Normal 0.125 0.05 0.133 0.062 0.212 0.118 0.049 0.182
�r Beta 0.6 0.2 0.848 0.818 0.878 0.816 0.756 0.869
�p Beta 0.2 0.1 0.042 0.009 0.068 0.078 0.015 0.135
'p Normal 0.15 0.2 0.208 0.164 0.251 0.150 0.070 0.221
�w Beta 0.2 0.1 0.122 0.054 0.187 0.156 0.054 0.267
'w Normal 0.15 0.2 0.272 0.235 0.305 0.203 0.143 0.284
�a Beta 0.5 0.2 0.730 0.638 0.830 0.831 0.747 0.932
�g Beta 0.5 0.2 0.779 0.706 0.849 0.810 0.715 0.906
�� Beta 0.5 0.2 0.809 0.718 0.916 0.882 0.801 0.970
�a Inv. Gamma 0.01 2 0.024 0.015 0.035 0.021 0.007 0.033
�g Inv. Gamma 0.01 2 0.075 0.047 0.109 0.072 0.034 0.110
�� Inv. Gamma 0.01 2 0.001 0.001 0.002 0.001 0.001 0.002
�� Inv. Gamma 0.01 2 0.017 0.010 0.024 0.013 0.006 0.019
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Appendix D �Phillips curves reduced form

The reduced form, deriving from the Bayesian estimation, for the price and wage

Phillips curves in the EHL model with indexation (EHLind) are:

�pt = 0:138�pt�1 + 0:853Et�
p
t+1 + 0:01mct (110)

�wt = 0:153�pt�1 � 0:151�
p
t + 0:99Et�

w
t+1 � 0:01�wt (111)

The EHL model with indexation á la Galí-Gertler (GG) implies:

�pt = 0:144�pt�1 + 0:847Et�
p
t+1 + 0:009mct (112)

�wt = 0:106�pt�1 + 0:884Et�
w
t+1 � 0:01�wt (113)

Finally, our time-dependent speci�cation is associated with:

�pt = 0:2�pt�1 + 0:99Et�
p
t+1 � 0:196Et�

p
t+2 + 0:012mct (114)

�wt = 0:288�wt�1 + 0:99Et�
w
t+1 � 0:283Et�wt+2 � 0:007�wt (115)

As shown in Chapter 3, the above reduced forms imply that models without time-

dependent adjustment capture persistence in the wage equation by price in�ation,

whereas (114)-(115) includes a backward term for wage in�ation. Both for price and

wage in�ation equation our Phillips curves are able to capture a higher degree of

persistence, as highlighted by the coe¢ cients attached to backward in�ation, with

respect to models based on indexation. This is not surprising as, since the Great

Moderation, indexation to past in�ation has progressively vanished.
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Appendix E �Welfare function derivation

E.1 Proof of Lemma1

Lemma1 shows the evolution of price dispersion under time-dependent pricing with

positive hazard function:

P1
t=0 �

tvari fpt(i)g =
1

1� �
�
1��p
1+'p

� P1
t=0 �

t

"
1� �p�

1 + 'p
�2 �

�p + 'p
��2t + �p'p�

1 + 'p
� �
�p + 'p

��2t�1
#

Proof:

We de�ne P t � Ei log pt(i) and �
p
t = vari

�
log pt(i)� P t�1

�
:

In Sheedy framework the price level is given by:

log pt(i) =
P1

h=0 �h logP
�
t�h

+

log pt(i) = (1� �p) log pt�1(i)� 'p log pt�2(i) +
�
�p + 'p

�
logP �t :

We de�ne a random variable X = log pt(i)� P t�1: It can be rewritten as:

log pt(i)� P t�1 = (1� �p) log pt�1(i)� 'p log pt�2(i) +
�
�p + 'p

�
logP �t � P t�1

adding and subtracting �pP t�1 the latter becomes:

log pt(i)�P t�1 = (1� �p)
�
log pt�1(i)� P t�1

�
+ �p

�
logP �t � P t�1

�
+ 'p [logP

�
t � log pt�2(i)]| {z }

�t
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Moreover E(X) = �x =
�t

1+'p
:

var(X) =
(1� �p)

��
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Finally, we obtain:

�p
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�
1� �p
1 + 'p
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�p + 'p

�# �2t�1 (116)
In the case of 'p = 0, it encompasses Calvo price dispersion. Iterating (116)

forward, the degree of price dispersion in any period t � 0 under the new policy is

given by:

�p
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We now discount over all periods t � 0, getting:
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(117)

QED.

E.2 Final step

Finally, using Lemma 1, we insert (117) in (85) in order to express our welfare function

in terms of quadratic variables:
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The welfare function could be rewritten as:
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