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Preface
Consumer behaviour analysis has received relevant attention in the theore-
tical and empirical economic studies. Demand Analysis is characterized

by this peculiar position: a detailed and comprehensive theoretical framework
is combined with a huge amount of empirical works. The reason of that lies
on the power of the Utility Theory (the theoretical background of demand
analysis) as a tool of applied economic reasoning.
Elasticity, in the demand analysis framework, is a feature that has re-

ceived particular attention in the studies of consumer preference and
willingness to pay, as in the institutional studies guiding policy decisions

as taxation and welfare. Moreover, the consumer reactivity to changes in
price can express market effi ciency. Then, in strategic economic sectors, this
measure can be seen as a tool leading the National Regulators in the market
structure definition processes.
This thesis tries to provide an analysis of Italian Electricity Market using

elasticity estimation. The Italian electricity sector undertook a deregulation
process starting in the 2004 that has led to overcome the system of vertically
integrated monopoly. This process led to the institution of Power Exchange
(IPEX). The transition had not been simple since the definition of a proper
market structure preserving competition is not an immediate task. In this
context, the information provided by demand elasticity have to be exploited
since the elasticity is strictly linked with the market power measured on the
supply side.
Given the purpose of Italian Regulator of preserving competition and effi -

ciency in the electricity market, investingation of demand elasticity becomes
essential to identify the design factors to be used for the definition of the
market structure.
The empirical questions that my thesis intends to answer are:

• Are the buyers in the Italian Wholesale Electricity Market responsive
to changes in price?

• What is the extent of buyer’s elasticity?

• Can buyers change their consumption profiles within the day given the
rational expectation of change in price?

In this research, the approach I used differs from the tradition of the previ-
ous literature in two respects: the type of data processed and the econometric
approach adopted.

ix



x Preface

Previous empirical studies used data referring the supply side of elec-
tricity market, given the assumption of oligopolistic market structure, they
estimate demand elasticity using residual demand function. In this work in-
stead, I estimated italian electricity demand elasticity using data referring
the demand side.
With regard to the econometric method, my research used a Bayesian

procedure, whose application in electricity demand analysis represents a novel
approach.
Until recently, the Bayesian approach has been in a distinct minority in

the field of econometrics, which has been dominated by the frequentist ap-
proach: computation has been the substantive reason for the minority status
of Bayesian Econometrics. The computing revolution of the last twenty years
has overcome this hurdle allowing to exploit the theoretical and conceptual
elegance of Bayesian Statistics in the empirical studies.
The thesis is structured as follows:

• The first part is devoted to the analysis of the statistical framework of
the thesis.

The first Chapter is a discussion enlightening the motivation about the
adoption of Bayesian Approach.

The second Chapter offers a brief review of the main bayesian statistical
tools, focusing on the post-estimation and simulation procedures.

• The second part refers to the empirical part of the research.
The third Chapter analyzes the structure of the Italian Electricity Mar-
ket after the liberalization process and provides descriptive statistics
referring the Day-Ahead Market.

The forth Chapter presents the multivariate linear regression model I
used for the elasticity estimation and the derived results.

The fifth Chapter presents a generalization of the linear regression
model relaxing the homoskedasticity assumption and shows the derived
results.



Chapter 1

The choice of Bayesian Method

There are many definition about what statistics is, and different definition
underlying different purposes, different interpretations of probability and dif-
ferent relevant information used. Statistics can be defined as the study of how
information should be employed to reflect on and give guidance for action in
a practical situation involving uncertainty.

However, there are more than one definitions of Statistics, reflecting a par-
ticular philosophical view point and expressing a particular attitude towards
the meaning of probability, the relevant information used and the models
adopted. I decided to start with a preliminary description of the main fea-
tures underlying Statistics as the concept of probability and the information
used. Then, I summarised the characteristics of the three main statistical
approaches: the Classical Approach, the Decision Theory and the Bayesian
Approach.

Finally, I will explain the reason why I have preferred to use in my research
the Bayesian method.

As I said before, Statistics concerns practical situation involving uncer-
tainty, that means there is more than one possible outcome and the actual
outcome is unknown in advance: it is undetermine. It implies the need to
construct a theory, a logical model guiding the behaviour in such situation
involving uncertainty.

1
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1.1 Probability

At this stage we must dig somewhat deeper into the sub-soil of inference by
examining the basic concept of probability. We have seen that different statis-
tical approaches imply a particular probability view-point. The spectrum of
views of probability is vast and complex. However, bearing in mind that our
prime interest is in the way in which different view of probability interralate
with different modes of statistical reasonoing, this reviews will over-simplifies
the true situation. Replicating the framework proposed by Poirier [?], the
concept of probability can be classified in three main categories: frequentist,
logical and subjective.

1.1.1 Frequency view of probability

This approach is the earliest in terms of detailed development, nonetheless,
it has been more widely discussed and used than any other. It provides the
interpretative framework for classical statistical methodology.
Central in this view-point is considering probability as something as ob-

jective, avoiding any consideration of personal factors, and amenable to
practical demonstration through experimentation. There is only a restricted
class of phenomena that can be analysed using this narrow concept of prob-
ability. The frequency view can only unambiguosly applied in situations
free from ill-defined or immeasurable factors, which are able to be repeated
over and over again under the same conditions and where unique probabil-
ity exists and be demonstrated empirically. The only information relevant
to probability assessment comes in fact from observing outcomes during re-
peated realizations, that is the sample data. Probability has unique value
determined by the nature of the situation under study. This uniqueness leans
heavily on the assumption that basic conditions do not change. Probability
becomes an unconditional concept, having no concerns for any circumstan-
tial evidence relating to the situation, for the different environment where
the experiment is performed.
The frequency approach rests on two assumptions about the behaviour

of the sample.
Firstly, if a random variation occurs during repeated realizations, it means

that outcomes vary from one repetition to another in an unpredictable man-
ner.
Secondly, the relative frequency of observations shows a long-term stabil-
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ity, then probability can be seen as the limiting value of the relative frequency
of an infinite sequence of repeatable situations and it becomes measurable
and objective. Only empirical investigation of frequency allows probabilistic
assessments and no assertion may make sense if it is not derived by the ex-
perience. Probability is a physical features of nature, it is seen as the means
of quantifying the uncertainty of natural phenomena.

The mathematical foundation of frequentist probability has been offered
by Von Mises 1 which introduced the concept of Collective as the reference
class of phenomena that can be analysed through statistical tools. Collective
are situations involving infinite sequence of uniform observations, a mass of
phenomena satisfying two conditions:

1) Relative frequency of particular attribute within the collective tends
to fixed limit

2) Principle of randomness: the fixed limit does not depend on the way
in which the selectoin of the sequence is done.

The collective is the reference class in which the sequence of attributes
has to be a convergent series.

Individual, personal and behaviouristic assessments are excluded from
statistitical analysis.

The basic assumption of this approach is an empirical one: knowledge
can not be augmented if they do not rest on experience.

The identification of probability with the limit of relative frequency of
repeated observations does not allow to investigate single events and their
probability. Reichembarch 2 awares of the practical reasonableness of prob-
abilistic evaluation of unique events, tried to broaden the narrow empiri-
cism which frequentist probability rest on, giving a frequentist formulation
of unique events: the probability of a single event is the relative frequency
of similar occurrance. This involves an inductive process, frequentist proba-
bility comes from processing particular information we have experienced in
order to derive general propositions.

1Von Mises, R. (1964).Mathematical Theory of Probability and Statistics, Academic
Press, New York.

2Reichenbach, H., The Theory of probability. An Inquiry into the logical and mathemat-
ical Foundations of the calculus of probability, University of California Press, Berkley-Los
Angeles 1949.
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1.1.2 Logical view of probability

In the logical views, probability measures the degree of the implication be-
tween two statements, which is usually intermediate between the logical impi-
cation and the complete denial. When the implication is necessary, probabil-
ity is infact equal to one; while the complete denial implies probability equal
to zero. The degree of confidence is supposed to be an objective measure,
a formal property of the implication. Logical probability is the rational in-
tensity of convinction, arising from the information derived from empirical
evidence and subjective impressions.
This attitude is in contrast with the frequency view, since the logical

probability does not expresses an empirical relationship, but a logical ones.
"Even if there is no empirical evidence, assessment on the degree of con-

fidence through probability is not inconsistent, since probability is not a
natural feature but expresses a logical relation between statements." 3

The difference between the frequentist and the logical view concerns also
the scope. The reference class of frenquency is the collective, that is a prac-
tical problem based on the idea of an infinite sequence of similar elements,
while logical probability applies to propositional statement expressing its ra-
tional degree of confidence.

According to Carnap 4, the probability of a statement, with respect to a
given body of evidence, is a logical relation between the statement and the
evidence. Logical probability quantifies the degree to which the outcome of
experiment supports or undermines an hypothesis. Probability is the logical,
formal and intrinsic link between the hypotesis and the body of evidence, as
it offers the link between them. Thus probability becomes the mathematical
tool (the confirmation function) through which inductive logic evaluate the
reliability of a hypohesis. Probability in Carnap’s theory is a metalinguistic
operator codifying (which is applied to) the language used to describe a given
situatiton and confirm the hypothesis explaining phenomenon.

1.1.3 Subjectivist view of probability

The last formulation, the subjective probability, arises from the dissatisfac-
tion with the way how logical probability quantify the degree of belief. Sub-

3Jeffreys., H. (1993) Theory of Probability, Clarendon Press, 3rd edition, Oxford, 1961
4Carnap, R.,(1967). The Logical Foundation of Probability, University of Chicago Press.
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jectivists refuse to think probability assessments as objective and rational
determined necessity between two statements; they criticize the assumption
of uniqueness, since there is not only one opinion justifying the body of evi-
dence.
De Finetti [30] have extensively deepened that intepretation arguing that

probability is a personal assessment since it is related to individual judge-
ment.

Logical probability represent rational degree of belief on an hypotesis, it
is a measure of the support given by some outcome of the experiment, in-
dipendent on the observer. For the Subjectivists, probability is a measure of
individual degree of belief relying on his relevant experience. The subjective
approach tries therefore to build up a formal probability theory on behav-
iouristic basis. It was informally advanced by Bernoulli 5 when he talked
about probability as the ’degree of confidence’that we have in the occurance
of an event, dependent on our personal judgement.
De Finetti formally opened the way to subjectivists quantifying personal

beliefs in terms of betting behaviour. "Probability is the betting quotient at
which an individual would be ready to bet a certain sum on its occurrence.
The probability of an event E is the price somebody is willing to pay in order
to receive an unitary amount of money if the event E occurs". Quantitative
assessments of personal opinions can be operationally determined introducing
a fair bet situation where it will be asked what would be the maximum price
p we are willing to pay to gain a unit amount of money in case the event E
occurs. The price p represents therefore the subjective probability relative
to the occurrance of event E.
The fundamental criterion one must obey is to avoid sure losses. The

condition of fair bet dictates that no gain or loss are guaranteed in advance.
This condition is also called consistency principle and it admits the subjective
probability to satisfy the Kolmogorov’s axioms, empowering it to assume
an objective meaning. The consistency principle avoids infact subjective
assessment being not reasonables.

The probability is the degree of confidence that a particular individual
develops in a situation of uncertainty, given a particular set of information
and a specific context.

5Bernoulli, J., Ars Conjectandi, Basel, 1713.
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Quoting De Finetti: "We base our judgments upon subjective circum-
stances, probability is not an automatic consequence of them but is a sub-
jective assessment since the choice about which factual circumstances should
affect our judgment is subjective."
"In a world without men there would be no probability, since it would not

exist nor knowledge nor ignorance, but only facts. Talking about probabilities
makes sense only if it is connected to human being, to his state of uncertainty
and to his desire to control the world through prediction and theory.

1.2 Relevant Information

The relevant information employed in the analysis are the second component
characterizing the different approaches.

1.2.1 The Sample Information

When we use a Bernoullian sample of indipendent and identically distributed
observations drawn from a population we adopt the classical approach. The
observations are supposed to be indipendent repetitions of a situation oc-
curring always under identical circumstance. The evaluation of sample data
is through frequentist formulation of probability and constitue the corner
stone of classical approach. The sample data are supposed to come from an
experiment which can be infinetely replicated under the same conditions.
This attittude is well express by Von Mises 6:
"Statistics is the mathematical theory of repetitive events". However,

sample data is not the only information relevant to a statistical study, early
experience and the potential consequences are also relevant. Some current
statistical approaches are designed to incorporate such alternative kind of
information, than that of just sample data.

1.2.2 The Risk Function

When statistical methods are used in order to give a guidance for action in
situation involving uncertainty the assessments concerning the consequences
of the alternative action are vital. The quantification of the consequences

6Von Mises, R. (1964).Mathematical Theory of Probability and Statistics, Academic
Press, New York.
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is via what is known as the risk function, that augments the information
provided by the sample data and it is crucial to the choice of the action to
be undertaken. Assessment of the consequences and their formal quantifica-
tion is the corner-stone of a particular statisical approach known as Decision
Theory. In the decision theory much of the emphasis is on the construction
of a rational model for human behaviour, in the sense of representing how
individuals make choice from alternative possible actions in the face of un-
certainty. However, using quantitative translation of personal assessment of
consequences as relevant information, may involve incorporating subjective
judgements inside the statistical model. We can present the last kind of
relevant information: the prior information.

1.2.3 Prior Information

Relevant information that can be potentially included in the statistical model
is represented by the general knowledge accumulated from other areas of ex-
perience as the previous observations of similar situations. Information of
this type is termed Prior Information. The Bayesian Statistics is the partic-
ular branch of statistics used to combine sample data and prior information.
Prior information say something about the value of the model’s parameters
under investigation.
Also in this particular field, evaluate previous information to be incor-

porated in the statistical model involves some degree of uncerainty, for this
reason we assign them a probability distribution: since there is no certainty of
the value of model’s parameters representing the prior information, Bayesian
inference assigns to them a prior probability distribution.

The three different kinds of relevant information can be seen on a tempo-
ral basis: prior information accumulated from previous external experience
refers to the past, sample data arising from the current situation (the exper-
iment) are related to the present, and the assessment of consequences refers
to the (potential) future action.
Broadly speaking, Classical inference uses just sample data, Bayesian

Statistics allows prior information to be parts of the statistical model, while
Decision Making Theory augments the inferential knowledge incorporating
also assessment of consequences.
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1.3 The different approaches

Different types of information and different procedures show how the different
approaches underlying different aims. Frequentist and Bayesian approaches
have exentially a descriptive function, while and decision theory has the
purpose of prescribing an action.
Any statistical procedure which utilizes information to obtain a descrip-

tion of the practical situation (through probability model) is an inferential
procedure and its study will be termed as Statistical Inference. On the other
hand, a procedure with the wider aim of suggesting action to be taken in a
practical situation (with an action guidance function), by processing infor-
mation relevant to that situation, is a decision making procedure and the
study of such procedures is termed statistical decision-making.
Following the framework proposed by Bernardo [10], let rewiev the three

main statistical approaches, differencing for their concept of probability, their
relevant information and the purpose.

1.3.1 Classical Inference

Classical Statistics lean on frequentist concept of probability and the tec-
niques adopted are the point and the interval estimation and the hypotesis
testing. It utilizes the sample data as its only source of relevant informa-
tion. For this reason it seems to belong to an inferential scope. Sample data
are managed through the likelihood function and the performance of the
techniques used is assessed through criteria based on sampling distributions.
Classical approach relies on the assumptionn that the sampling distribution
will converge to the distribution of the population through an infinite repe-
tition of the same experiment. Moreover, the properties of the estimate as
consistency and accurancy refer only to their asymptotic behaviuor.

1.3.2 Bayesian Inference

It is again an inferential procedure admitting the processing of sample data
as well as prior information. The prior information is modified by the sam-
ple data through the application of Bayes Theorem, yielding to a combined
assessment of the state of knowledge of the situation of interest. There are
two basic elements we have to mention.
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First, subjective probabilities are assigned to the different competing hy-
poteses explaining the theory. The prior information are processed into the
model through probability distributions which quantify the degree of confi-
dence the researcher has in the values of model’s parameters. These subjec-
tive probabilities are consistent with the Kolmogorov’s axiomatic definition
of probability.
Secondly, using the conditionalization rule deriving from the Bayes The-

orem, it is possible to learn from the evidence and update, in a quantitative
way, our credence in the ligth of the experimental results.
Inferential statements are expressed through posterior probability dis-

tributions whose variance embodies the measure of their accurancy. This
approach can not lean on frequentist concept of probability, the subjective
interpretation is undeniable given the use of prior informatin.
The use of Bayesian methods is not restricted to situations where prior

information exist, also the ignorance has a probability interpretation and it
can be processed within the inferential procedure.
Bayesian theory has become a predominant approach to confirmation in

the late twentieth century. The popularity of the Bayesian approach is due to
its flexibility, its apparently effortless handling of various technical problems
and the injection of subjective element into the theoretic model.

1.3.3 Decision Theory

Stemming from the work of Wald 7, this approach is designed to provide
action guidance under uncertainty situations, i.e. decision rules.
It embodies assessment on the consequences of alternative actions, ex-

pressed through the analytical representation of risk function. The values of
any decision in favor of a specific action, on the basis of sample data and
prior information, is expressed by the expected loss. The aim is to choose
the decision rule with minimum risk.
No particular philosophical view of probability is implied in the decision

theory, although when prior information are incorporated inside the model,
a subjective view of probability is adopted.

This broad classification oversimplyfies the true structure of statistical
approaches. There are not well-defined distinction between the approaches

7Wald, A. (1950). Statistical Decision Functions. John Wiley and Sons, New York.
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in terms of their function. Many arbitrary and personal matters are involved
in the formulation of rules for processing information in the inferential pro-
cedure, that as many approaches will exist as there are individuals with their
own interpretations of what constitute reasonable rules for behaviour. In
practice the boundaries are blurred and it should be recognized that the
adoption of a particular procedure also depends on arbitrary criteria related
to personal judgments and attitudes.
The classical approach seems more structured, but it seems a simplifica-

tion.
The choice to exclude from the inferential procedure the a priori infor-

mation and the consequence assessments arises from the convinction of their
poor objectivity. Classical statisticians aim indeed to construct a theory
which would be universal in its application, free from subjective assessment,
based on the only information quantifiable. Despite the purpose, this ap-
proach also conceals subjective assessments.
Let consider the prevalent hypothesis testing procedure proposed by Ney-

man and Pearson whoose meaning has distanced from the significancy test
of Fisher. Fisher test assumes just one hypothesis (the null hypothesis) rep-
resenting the randomness of an experiment. This hypothesis can only be
falsified, thus he never permits hypotesis to be accepted. Significance test
does not allow to formulate an alternative hypothesis. The set of alternative
hypotheses is in fact numerically infinite and qualitatively indeterminate. In
the Fisher’s framework, the refutation of the null hypothesis do not logically
imply the acceptance of any alternative hypothesis. Fisher stated " If there

is not enough evidence to reject the null hypothesis it does not mean that
we have enough evidence in favour of it. The lack of evidence against a
hypothesis is not an evidence for it."
In contrast, Neyman-Pearson use the terms acceptance and rejection.

According to them , the outcome of a test is "an act or decision to take a
particular action. This process is certainly not any sort of reasoning, it is an
act".
Within the Neyman-Pearson framework, the process works differently:

there are a null hypothesis and an alternative ones and after comparing p-
value with the significance level, it will be decided to reject or not the null
hypothesis. The rational mind did not discard a hypothesis unless it could
conceive at least one plausible alternative hypothesis. For this reason Ney-
man proposed to replace the Fisher’s inductive method with an "inductive
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behaviour" since the latter implies a choice.
Moreover, the standard 5% significance level doesn’t really have mathe-

matical basis for all cases. It is a result of a long-standing tradition.
Neyman’s ideas on testing channelled statistical theory into new direction

which culminated with Wald’s general Decision Theory.

Instead of producing a procedure free from subjective assessments, some
of the main procedures of classical statistical inference involve discretionary
interpretations of results and they seem to be included in decision-making
theory.

1.4 Why Bayesian?

1.4.1 The Problem of Induction

The previous consideratons recognize statistics as a necessary tool for kwoledge.
Knowledge relies on generalization, that is the process of deriving general

statements from particular experiences and it produces propositions asserted
to be true for all member of a certain class. Thus, knowledge is strictly linked
with the inductive reasoning. Induction is defined as the logical link from
particular statements to general assessment, it derives from particular expe-
riences general proposition pertaining an entire class of phenomena. It is the
inductive reasoning that can broaden and deepen our empiraical knowledge.
Although all generalizations are suggested by the observation of specific

phenomenon, they disregard reference to particular occurrence. Mature sci-
ences seem to be effective relying on observed evidence to establish extremely
general, powerful and sophisticated theories. The shift from the observation
of particular phenomena to the derivation of a general statement is not log-
ically valid, nor necessarily implied. Considering exclusevely a logical per-
spective, the inductive inference, unlike the deductive inference, is not valid.
Aristotle had already exposed the fallacy of inductive inference. In the

field of empiricism, we are always in an inductive situation: from a finite
number of particular occurrences we draw explanatory and generalizing in-
ference. However, induction involves a risk of error along with its potential:
good induction may lead from true premises to false conclusions, inductive
inferences are therefore contingent.
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David Hume 8 is usually credited for having disclosed the theoretical root
of these considerations in a trasparent way called "The problem of induction".
Hume divided all reasoning into deductive reasoning and probabilistic,

that is the generalization of causal reasoning. Deductive logic is completely
demonstrable, since the premises of an argument, constructed according to
the rules of the logic, imply its argument’s conclusion. Deduction is explica-
tive: it orders and rearranges our knowledge without extending its content.
On the other hand induction is ampliative, it establishes universal proposi-
tions from particular instances. Scientific theories try to derive regular and
persistent pattern to the behave of phenomena.

Hume pointed out that the empirical sciences, in their confirmation through
experiments, rely on two main assumptions:

• Uniformity of Nature

• Causality principle

Scientific theory need of these two principles in order to derive some kind
of previsions.
According to Hume we cannot rationally justify the claim that nature will

continue to be uniform. The Uniformity Principle cannot infact be proved
through deduction, since it does not express a necessary connection, and it
cannot be demonstrated by causal reasoning, since the principle drives it-
self the premises of the causal reasoning and such proof would be a petito
principi.
The notion of causality is closely linked to the problem of induction. Ac-

cording to Hume, we reason inductively by associating constantly conjoined
events, and this mental act founds our concept of causation. However, the
relations of contiguity and succession do not necessary imply causal connex-
ion. According to Hume, human being tends to give to contiguity relations
the attribute of necessity. Causal assiociation, instead, is an "habits of the
mind". Rather than reason, natural instinct explains the human ability to
make inductive inferences.
In the real world there are no necessary connections, only constant con-

juctions. Necessity and causality are not features of the word, they are
perceptual categories. For this reason induction is a contingent inference,

8Hume, D. A Treatise of Human Nature. (1738)
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probabilistic connection, no less than simple causal connection, depend upon
habits of the mind and are not be found in our experience of the world.
Inductive inference can yield a conclusions only with a certain probability.
Following Hume work, two centuries later Karl Popper proposed again the

problem of induction formulating its controversial Falsification Theory. Ac-
cording to Popper, science adopts the hypotetic-deductive method formally
based on four main step:
1. Formulation of hypoteses or theory
2. Derivation of consequences through deductive reasoning
3. Design of Experiment simulating the occurance of one hypothesis and

observation of empirical results.
4. Acceptation or rejection of the hypotesis or theory according to the

outcomes.
According to Popper it is not possible to establish the truth of a theory by

empirical evidence, since scientific theories have universal scope but no finite
evidence can ever adjudicate among them. Theories could be only falsified
and only in that falsiabillity by counterexample lies the confidence of the
knowledge. Induction has no place in the logic of science.
Theories can not be confirmed or verified. They may be falsified or ten-

tatively accepted if corroborated by the proper kind of test.
"The best we can say of a hypothesis is that up to now it has been able to

show its worth, and that it has been more successful than other hypotheses
although in principle, it can never be justified or verified."9

1.4.2 Bayesian Confirmation Theory

Bayesian model is much richer then the tipical model assumed in classical
statistics. Reasearchers, in the classical approach, can have one of three
attitudes towards model’s explanation: they accept the theory, they reject
the theory, or they neither accept nor reject it.
A theory is accepted or rejected once the evidence in favor of one of

the two decisions is suffi ciently strong, if the evidence is strong in neither
way, it is neither accepted nor rejected. In the Bayesian model, by contrast,
the researchers’attitude toward an hypotesis is incapsulated in a degree of
belief, that can take value between 0 and 1. Rather than laying down, as the

9Popper, K. The Logic of Scientific Discovery.(1934)
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classical approach, a set of rules dictating when the evidence support or reject
a theory, the bayesian approach prescribes a set of rules on how individual’s
opinion (prior information) should change in response to empirical evidence.
Let start defining Bayes’Theorem

Theorem 1 Bayes’Theorem:
Let be {H1, H2, ..., Hk} a set of events mutually exclusive and exhaustive

and A some other events of particular interest. The probabilities, P (Hi),
(i=1,...,k), of each of the Hi are known, as are known the conditional proba-
bilities, P(A|Hi) (i=1,...,k) of A given that Ai has occurred. Then, the condi-
tional (’inverse’) probability of any Hi (i=1,...,k), given that A has occurred,
is given by:

P (Hi|A) =
P (A|Hi)P (Hi)∑k
j=1 P (A|Hj)P (Hj)

(1.1)

As expressed, Bayes’Theorem finds wide range of applications and there
is no diffi culty to extend its meaning considering the set of eventsHi as the set
of hypoteses representing what constitute the appropriate model explanation
of a practical situation. The event A, in this way, becomes reinterpreted as
an observed outcome that is the sample data.
Listing the two features of the theorem we have:

1) Prior to the observation, P (Hi) is the probability thatHi is the appropriate
model specification. These are named prior probabilities of the different
hypoteses, and constitute the first sources of relavant information.
2) The probabilities of observing A, when Hi is the correct model specifi-

cation, are P (A|Hi) (i = 1, ..., k) and they are simply the likelihoods of the
sample data.
Bayes Theorem can be seen as a mathematical tool of updating, through

the information provided by the sample data, our earlier state of knowledge
expressed in terms of the prior probabilities, P (Hi) (for i = 1, ..., k). The
updated assesment is given by the posterior probabilities (or inverse probabil-
ities) of the different hypoteses being true after using the futher information
provided by observing A: P (Hi|A) (i = 1, ..., k).
Bayes Theorem represents the foundation of inductive reasoning.
This is the essence of Bayesian inference: the posterior probability of Hi

given A is proportional to the product of the prior probability of Hi and the
likelihood of A when Hi is true. Prior information are in this way augmented
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by the sample data to yield a probabilistic description of the current situation
The updated knowledge is fully described by the posterior distribution.

Inferences are to be made by combining the information provided by
prior probabilities with information given by sample data; this combination
is achieved by ’the repeated use of Bayes’Theorem’and the final infereces
are expressed solely by the posterior probabilities.

It is controversial why frequentist are reluctant to assign initial probabili-
ties to the different hypoteses about the parameters’values they investigate.
They assume infact the parameters of the model are unknown constants, not
a random variables which assume different values in a series of trials. In
Bayesian approach prior probability does not admit any frequency interpre-
tation; it is a subjective probability.
The idea that prior probabilities are not empirical concepts is considered

by some frequentists inadmissible since these probabilities can not be tested
by any experiment. However, this cannot be strongly enough refuted. In
Bayes’s approach the parameter values are uncertain and researchers feed
some degree of confidence about their values; the quantitative traslation of
this degree of belief is the assignment of a probability distributions to the
parameter that become itself a random variable.
Inductive reasoning is the mental process according to which our prelimi-

nary hypoteses are modified on the basis of the data supplied by experiments.
The inductive reasoning has therefore a Bayesian foundation. A set of ob-
servations may be logically consistent with several hypotheses, we all draw
conclusions from the empirical results, these conclusions are uncertain and
this uncertainty can be expressed in a quantitative consistent way through
the posterior probability distribution. Bayes’Theorem is important because
it provides a mathematical representation for this consistent choice between
alternative hypotheses on the basis of quantitative evaluation of their respec-
tive uncertainties and the quantitative information provided by the data.
This is the worth of Bayes’work: it provides the mathematical foundation

of inductive reasoning





Chapter 2

Bayesian Statistics

In this chapter I rewiev the main steps undertaken in Bayesian Approach,
how prior knowledges are combined with sample data to derive posterior
inference and the main estimation procedures.
Let suppose that sample data x arises as an observation of a random

variable, X. The distribution of X, specified by the probability model, is
assumed to belong to some family, ℘, indexed by a parameter θ. It is as-
sumed that the probability (density) function of the random variable has a
known form, pθ(x), depending on θ; but θ is unknown, we expect it lies in a
parameter space Θ. For fixed sample x, pθ(x) is the likelihood function, it
associates for any pssible value of θ a probability distribution to the sample.
Both θ and x may be either univariate or multivriate, discrete or continuous
variables. Knowledge of the true value of θ would be all that is needed to
completely describe the current practical situation.
The aim of the inferential procedure is to investigate the unknown value

of θ. This cannot be done with any certainty, all we can expect is some
probabilistic statement involving θ, based on the available information. In
the classical approach this is achieved by processing the sample data as the
only source of information in order to produce point or interval estimates
of θ. Bayesian inference indeed incorporate into the model further a-priori
information. To do that, a wider view of the nature of the parameter θ is
taken. It is assumed that any knowledge we have of the true value of θ, at
any stage, is uncertain and it can be expressed by a probability distribution,
or by some ’weighting function’, over the parameter space Θ. The parameter
θ is now essentially treated as a random variable, in the sense that θ can

17
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assume different values with different probabilities or weights. Prior knowl-
edge of θ is expressed through the probability distribution function p(θ). The
sampling increases this knowledge and the updating process is expressed by
the posterior distriburion. Posterior distribution is derived using Bayes’The-
orem combining the Likelihood function (representing information from the
sample) with the prior distribution p(θ|x):

p(θ|x) =
pθ(x)p(θ)∫

Θ
pθ(x)dF (θ)

(2.1)

The posterior distribution describes our assessment of where the true
value of θ is likely to lie in Θ after observing the sample.
This is a more direct form of inference than that we have in the classical

approach since we have the intere (posterior) distribution of θ.
There may be situations where such a full description is not nedeed. Certain

summary measures about p(θ|x) may suffi ce. For example it may be enough
to know what value of θ is most likely, or in what region θ is highly likely to
fall. These concepts in Bayesian inference are parallel with the idea of point
estimate and confidence region in the classical approach, but it must be re-
membered that their interpretation is totally different and this difference can
corroborate our prefernce for the Bayesian approach.

2.1 Point Estimation

If we are interested in a crude summary of the derived posterior distribution
for the parameter θ, a good choice of the point estimate can be the mode or
the mean of the entire distribution. This estimate in the bayesian approach
has the direct interpretation as the most likely value of Posterior distribu-
tion that constitute the complete inferential statement about θ. Bayesian
estimates infact contains their own internal measure of accurancy (through
the posterior dstribution). This is the most preminent reason of adopting a
Bayesian approach.
This facility, indeed, is not available in the classical statistics. Properties

as unbiasness, consistency precision etc., can not be ascribed to the point
estimate without reference to some larger framework than the current situ-
ation. The probability model must infact be built on a sample space, which
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is assumed to provide the constant basis for repeated and identical experi-
ments. This is the concept of collective: the long-run behaviour of estimates
are aggragated properties referring to the population, although they are at-
tribuited to specific realization. However, it is sometimes disputed if such
collective exists, the specification of the sample space may be claimed to be
arbitrary or largely subjective. In the frequentist field, if we are interesting in
the final precision of our estimator, we must rest on any properties related to
the long-run behaviour of the procedure itself. It is infact necessary to con-
sider the sampling distribution defined in terms of a sequence of indipendent
repetitions of the current situation.
In classical inference the situation is quite different. It may exist different

values for the estimator function θ(X) and they may differ from the true fixed
value of θ, and their different interpretation is in term of different sets of
realization (sample data), rather than in terms of differing degree of belief
about θ.

2.2 Credible Region

Given posterior distribution we can derive the credible regions, that is the
region where the parameter may reasonably be expected to lie with 95% of
confidence.
The expression is given by the formula:[

θ(x); θ(x)
]

: P
{
θ ∈

[
θ(x); θ(x)

]
|x
}
≥ 1− α (2.2)

In a frequentist approach, the confidence interval has not a direct prob-
ability interpretation. Probability interpretation only refers to the long run
behaviour of a procedure and namely that a portion 1−α of intervals derived
from repeated experiments will contain the true value θ. Whether a partic-
ular interval in some current situation contains θ is totally uncertain. The
assessment of its probability of actually enclosing θ is in terms of repetitions
of the experimental situation. As we saw earlier there is no way of judging
whether a particular confidence region does or does not include the realvalue
θ.
A naive statistician will almost inevitably and implicitly attach a 95% of

confidence to the specific interval; in the practical use it is hard to avoid.
This is the main fallacy of the frequentist approach. Situations admitting

repetition under essentially identical conditions are the only possible object
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in the real of statistical enquiries.

The fallacy of the frequency approach is to not declare that the concept
of a collective is untenable: that we can never really assert that an unlimited
sequence of essentially identical situations exists. Bayesian confidence (cred-
ible) region for θ has instead this direct probability interpretation and it is
determined solely from he current sample data x.

2.3 Hypothesis Testing

In a view of direct probability interpretation provided by the posterior dis-
tribution, the one sided Bayesian Hypotesis Test has a form simpler than its
frequentist parallel.

In a practical situation we may need to assess whether some statement
about θ lying in a particular region of the parameter space is reasonable or
not. Posterior distrinbution offer a direct probability evaluation of the two
hypoteses.

Giving the hypotesis test:

H0=θ ∈ Θ0 against H1 = θ ∈ ΘC
0

We have:

P (H0|x) =
∫
θ∈Θ0

p(θ|x)dθ = 1− P (H1|x).

If P (H0|x) is smaller than the significance level we will reject H0.

Note that the direct expression of the result of test in the form of P (H0|x)
eliminates the asymmetric nature of the test observed in the classical ap-
proach. In particular there is no need to distinguish between the null and
aternative hypothesis.

The theoretical and conceptual elegance of the Bayesian approach has
made it attractive for many decades. However, until recently, Bayesian have
been in a distinct minority of many field of econometrics, which has been
dominated by the frequentist approach. The two main reasons for this reluc-
tance rely on the use of prior information and the computational problems.

With regards to the former, many reaserchers object to the use of ’sub-
jective’prior information in the supposedly ’objective’science as economics.
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2.4 The Role of Prior Distribution

There is a long debate about the role of prior information in statistical sci-
ence. Most of Bayesians would argue that an enourmous ammount of non
data information need to be processed into the model (e.g. econometricians
must decide which model to work with, which variable to include, which
empirical results to report etc.).
The Bayesian approach is honest and rigorous about how such non-data

are used, on the grounds that more information is preferred to less. More-
over, Bayesians have developed noninformative priors for many classes of
model and, as it will be shown in the next section, the derived posterior is
proportional to the likelihood, representing in this way only the information
arising from data; that is, the Bayesian approach allows for the use of prior
information if we wish to use it. However, if we do not wish to use it, we do
not have to do so. Regardless of how researcher feels about prior information,
it should in no way be an obstacles to the adoption of Bayesian Method.
Computation is the second reason for the minority status of Bayesian

econometrics. That is, Bayesian econometrics has historically been compu-
tationally diffi cult or impossible for a large classes of model. The computing
revolution of the last 20 years has overcome this hurdle and led to a blossom-
ing of Bayesian methods in many fields. However, this has made Bayesian
econometrics a field which makes heavy use of the computer. In essence, the
ideas of Bayesian econometrics are simple, since they only involve the use of
probability. However, using Bayesian econometrics in practice often requires
advanced computational skills and software.
The next two sections rewiev how Bayesian inference has tried to an-

swer to the main frequentist objections. Prior ignorance has been infact
processed in the statistical model through the non informative priors, while
computational diffi cults, before the computer software developments, have
been overtaken using Conjugate Prior.

2.4.1 Prior Ignorance

One of the corner stone of the Bayesian approach is the principle of insuf-
ficient reason. This principle (also called principle of indifference) is a rule
for assigning epistemic probabilities. It states that if there are no outcomes
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mutually exclusive and collectively exhaustive and the possibilities are indis-
tinguishable, then it should be assigned equal probability to each possibility.
In Bayesian terms, this means using non-informative prior. This princi-

ple provides a statistical description of the state of prior ignorance. When
our prior information are insuffi cient to assign precise prior probabilities to
the hypoteses, we quantify this ignorance assigning equal probability to all
possible outcomes.

Jeffrey 1 was the first who expressed this principle
"If there is no reason to believe one hypothesis rather than another, the

probabilities are equal...to say that the probabilities are equal is a precise
way of saying that we have no ground for choosing between alternative....The
rule of assigning equal probabilities is not a statement of any belief about
the actual composition of the world, nor it is an inference from previous
experience; it is a merely the formal way of expressing the ignorance."
The prior density function assigned to parameter θ over the space Θ is

therefore a costant density.
For instance, for the parameter location µ, where the parameter space is

the whole real line (-∞;∞) we would chose the prior p(θ) to be the uniform
density.
The invariant density function is also named as improper prior, since its

integrand cannot ensure to equal one. This presents no basic interpretative
diffi culty if we assume probability as a degree of belief. The prior p(θ) will
infact acts as a weighting function operating on the likelihood and the pos-
terior will be proportional to the sample density function. However, Jeffreys
warned about an extensive use of improper prior and the main objection is
the impossibility to carry out significance test since no odds, no probability
could be assigned to a point hypotesis.

2.4.2 Conjugate prior

Although Bayes’Theorem is mathematically simple, its implementation can
be troublesome. The first diffi cult lies in the normalizing costant, the denom-
inator of [2.1]. This had posed the central practical problem in Bayesian
Inference: finding a numerical and analytical solution for the integral. His-
torically, two solution to this integration problem have been sought. Be-
fore the widespread availability of computer, Bayesian researchs centered on

1Jeffreys, H. Theory of Probability, 1939, Clarendon Press, Oxford, 1961.
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defining prior distributions with convenient mathematical properties includ-
ing tractable analytical solution to the integral. The family of distribution
found was called Conjugate Prior. Conjugate prior is a family of distribu-
tion which, combined to the likelihhod, derive a posterior which belong to
the prior’s same family distribution. Conjugate priors are an algebric conve-
nience which derive a closed form expression of the posterior density. More-
over, conjugate priors give the intuition of how bayesian inference updates
prior information through the likelihood function. The prior and posterior
distribution are infact indexed by parameters lying in the same parameter
space. That is parameter indexing prior distribution can be interpreted in
terms of pseudo-observations, that is it can be seen as the sample size of
prior information.

Prior and posterior parametrs are able to measure the relative contribu-
tion of prior opinion and sample data in deriving posterior inference.

In my research the properties of natural conjugate priors will not be
exploited. I have preferred to use the more advanced techniques of numerical
approximations through Simulations. In particular, I focused on Markov
Chain Monte Carlo.

2.5 Simulation

Bayesian Computation has beem the most challenging part of the develop-
ment of my research, as I said before, the integration of the normalizing
costant of the posterior is not the only analytical problem a bayesian re-
searcher has to face. If we do not use conjugate prior, the posterior it-self
may not be ascribable to a standard distribution and summary statistics used
for point estimation, as the expected value for instance, may not be directly
derived.
However, in the last decades a myriad of posterior simulators have been

developped and I exploited these statistical tools in order to approximate the
posterior density through the sampling distribution of a sequence of random
variables simulated to be drawn from the posterior (the target density).
The algorithms I used refer to the class of Markov Chain Monte Carlo

procedures, in particular, for the linear regression model the posterior simula-
tor I implemented is the Gibbs Sampler, while for the linear regression model
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with heteroskedasticity, I combined the Gibbs Sampler with the Metropolis-
Hasting Algorithm.
This section want to review the main theoretical premises of posterior

simulation and enlighten the main steps of the algorithm I used in my
research. The section, firstly introduce Monte Carlo method, the pioneering
procedure of approximation methods, then it focus on the more advanced
Markov Chain Monte Carlo processes (MCMC).

2.5.1 Monte Carlo Method

It is a common practice, after deriving the posterior distribution p(θ|x), to
presenting the expected value as the main point estimate and deriving its
variance as a measure of the accurancy of the estimate.
All these posterior features require the evaluation of an integral of the

form:

E [f(θ|x)] =

∫
Θ

f(θ|x)p(θ|x)dθ

where f(θ|x) is the function of interest.
If we are seeking the expected value the function takes the form f(θ|y) =

θ, while if we are interested in the variance g(θ|x) = {θ − E(θ|x)}2 .

Thanks to the widespread availability of computer, when natural conju-
gate prior is not used, more recent statistical developments focus on numer-
ical approximation. There are many methods for doing this and all of these
are applications or extensions of Law of Large Numbers and Central Limit
Theorem.
A straighforward implication of the Law of Large Numbers is:

Theorem 2 Monte Carlo Integration

Let S the numer of drawing and
{
θ(s)
}S
s=1

be the resulting iid random

samples draw from p(θ|x), and define ĝS = 1
S

S∑
s=1

f(θ(s))

then ĝS converges to E [f(θ)|x] as S goes to infinity.
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In practice, this means that if a random sample is drawn from the poste-
rior, the theorem allows to approximate E [f(θ)|x] by simply averaging the
function of interest g(θ) evaluated at the differrent random samples. Sam-
pling from the posterior distribution is what constitutes posterior simulation
and the theorem describes the simplest one.
Monte Carlo integration can be used to approximate E [f(θ)|x] only if the

approximation error tends to zero as S goes to infinity. Since the procedure
allows to choose any value for S (although larger values of S can increase the
computational burden), there are many ways of gaunging the approximation
error associated with a particular value of S. However, many of them are
based on extension of central limit theorem. For the case of Monte Carlo
integration, the Central Limit Theorem implies:

Theorem 3 Numerical Standard error
Using the setup of Monte Carlo integration Theorem
the approximation error term:√
S
{
f̂s − E [f(θ|x)]

}
→ N(0, σ2

g)

as S goes to infinity, where σ2
f = var [f(θ|x)] .

This theorem can be used to obtain an estimate of the approximation error
in a Monte Carlo integration using the properties of Normal distribution. For
instance, using the exact value ±1.96 (the values within the standard Normal
distribution locates the 95% of its probability mass), we can derive the result:

Pr

[
−1.96

σf√
S
≤ f̂s − E [f(θ|x)] ≤ 1.96

σf√
S

]
= 0.95

By controlling S, it can be ensured that the approximation error
ĝs−E [f(θ|x)] is suffi ciently small with a high degree of probability. Unless

σg is unknown, it can be approximated through the Monte carlo procedure.
In many empirical context, this may be a nice way of expressing the ap-
proximation error implicit in Monte Carlo integration. The latter theorem
also implies that if S = 10000, then the standard erros is 1%, as big as the
posterior standard devitio. Unfortunately, it is not always possible to per-
form Monte Carlo Integration since it is based on the the indipendence and
identical distribution of the draws. Moreover for many model, as the linear
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regression model I proposed, the posterior (from which the sample is drawn)
do not have the Normal Form. In these cases, development of the posterior
simulator is more changelling and I am going to explain them in the next
sections.

2.5.2 Markov Chain Monte Carlo Method

The worth of Monte Carlo Integration Theorem is to give a theoretical frame-
work to posterior simulation. However, it is based on the assumption that
the sample is the bernoullian one. When we have to approximate using a
sequence of non indipendent observations, we must seek a different stochastic
process to be used.
As we will see later, in the two model I proposed, posterior simulation had

to handle this issue since I could simulate the target posterior distribution
of the parameter using only a sequence of non indipendent realizations. Any
observation infact was dependent on the previuos draw. Since this kind of
dependency is ascribable to the Markov Chain Stochastic Process, I used the
simulation methods exploiting the properties of Markov Chain implementing
Markov Chain Monte Carlo Algorithm.

This method is based on constructing a Markov Chain process such that
the target distribution (the posterior density in our case) is the stationary
distribution of the chain, and such that the chain converges in probability
to this invariant distribution. Thus, in Markov Chain Monte Carlo samples
from the target distribution are obtained only asymptotically. When conver-
gence occurs, realizations of the chain are realizations of the invariant target
distribution.
In the standard Markov Chain theory, the purpose is to find the station-

ary distribution of the process, Markov Chain Monte Carlo methods instead
turn the theory around: we know the invariant target distribution, p(θ|x)
and we construct a chain having the target (the posterior) as its stationary
distribution.
Markov Chain used for Monte Carlo purposes have to satisfy some regu-

larity condition such as:

• The existence of a unique stationary distribution

• The convergence of the stationary distribution to the target distribution
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• Ergodicity.

In the next section we are going to set out the conditions under which a
Markov Chain process ensures to meet these requirements.
Let start to enlighten the basic theory about Markov Chain.

2.5.3 Markov Chain

A Marlov Chain is a sequence of random variable θ1, θ2, ... such that the
probability distribution of any one, given all preceding realizations, depends
at most on the immediate preceding observation. Specially, if Θ is the sample
space for θ and A is a subset of a collection of A on Θ then

P (θt+1 ∈ A|θ1, θ2, ..., θt) = P (θt+1 ∈ A|θt) (2.3)

for all t = 1, 2, ..., t and any such A. Here θ represents the parameter
vector whose posterior ditribution need to be simulated.
Expression [2.3] contains the main features specifying a Markov Chain.
The value taken by θt is called the state of the chain at t which has initial

distribution P (θt) .
The Transition Probability P (θt+1 ∈ A|θt) represents the probability of

the next value of the chain given the current value and it is assumed to
be homogeneous, that is it does not depend on the date, t. Homogeneous
Markov Chain are fully described by the initial state and byb the transition
probability which describes how the chain moves from the its state at t to its
state at t+ 1.
When the sample space is finite and discrete the collection of conditional

probabilities, one for each θt, can be gathered in a stochastic matrix, called
Transition Matrix, whose elements are:

k(θt, θt+1) = P (θt+1|θt) θt, θt+1 ∈ Θ (2.4)

Transition matrix is a square matrix of order M (where M is the dimen-
sion of the discrete state space, that is the number of possible states); whose
elements are non-negative and its rows, being probability distributions, sum
to one.
The probability distribution P (θt+1), say pt+1, can be described in terms

of the transition kernel and the distribution of its previous analogous θt:
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P (θt+1) =

M∑
i=1

P (θt = i)P (θt+1 = j|θt = i), j = 1, 2, ...,M (2.5)

that is

pt+1 =
M∑
i=1

pt(i)K(i, j) (2.6)

The matrix version of [2.6] is

p′t+1 = p′tK (2.7)

where p′t+1 and p
′
t are row vectors describing the unconditional probability

distribution of Xt+1 and Xt respectively.
For a Chain with continuos sample space the sum is replaced by an inte-

gral, p(·) is a density function and the analoguos expression is:

pt+1(θt+1) =

∫
K(θt, θt+1)pt(θt)dθt (2.8)

Stationarity and Uniqueness of the invariant distribution

A Markov Chain used for Monte Carlo simulation has to convergence to the
target distribution we want to simulate, then it is natural to ask if there
exists a stationary distribution such that pt+1 = p = pt. Mathematically,
the invariant distribution p has to be the solution of the vector or functional
equations:

p′ = p′K (2.9)

or p(θ′) =

∫
Θ

p(θ)K(θ, θ′)dθ (2.10)

The existence of this solution is subjected to some verifiable conditions.
In the discrete case, the vector equation [2.9] implies that p(I − K) =

0. Thus, p′ is the eigenvector associated with the unit eigenvalue of the
transition matrixK. Since a square matrix with non-negative entries and rows
summing to one always has a real unit eigenvalues, a stationary distribution
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always exist. However, we have to rule out the presence of multiple unit
eigenvalues, since, for our simulation purposes, the stationary distribution
must be unique.
In a finite discrete state space, suffi cient condition for the existence of a

unique stationary distribution depends on the so called Irreducibility condi-
tion. A chain is irreducible if all the states can be reached from any initial
state after a finite number of steps, that is all the states communicate each
other.
Let have a look a little close at the algebra of the finite discrete chain.

Repeated applications of [2.6] yield to:

pn+m = pnK
m (2.11)

State j is said to be accessible from the state i if there must be a postive
probability to move from i to j after a positive number m of steps.
Now the j-th element of pn+m is the probability of the chain being in

state j at time n + m. By the law of conditional probability this must be
equal to the sum over i of the probabilities of being in state i at time n times
the conditional probability of moving from state i to state j in m steps.

P (θn+m = j) =
∑
i

P (θn = i)P (θn+m = j|θn = i) (2.12)

Comparison of the last two expressions shows hat Km must contain the
elements of the form P (θn+m = j|θn = i). Km is called the m-step transition
probability matrix and its elements are denoted by pij(m).
State j is accessible from the state i if and only if a number of m > 0

steps exists such that pij(m) > 0.

If the state i is accessible from state j and viceversa, the two states are
said to communicate and the sets of states communicating form a comunica-
tion class. A chain is irreducible if and only if there is only one communica-
tion class, that is all the states communicate each other and the transition
matrixes K1, K2, ..., Km contains all positive elements.
This condition highlights the connection between Irreducible Chian and

Markov Chain Monte Carlo: in MCMC, where the target distribution is the
stationary distribution, the algorithm needs to visit all possible states (all
possible values of θ corresponding to he parameter space), regardless of its
starting point. Thus, an irreducible chain will certainly returns to any initial
state because pij(m) > 0 for some m.
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When the state space is not finite and discrete, the existence of a unique
stationary distribution needs extra conditions.
In a countably infinite state space the extra condition to be mentioned

is the positive recurrence. A chain is positive recurrent if any state has a
finite and positive return time with probability one, where the return time
is defined as the time a chain starting from i takes to be again in the state i
that is :

Ti = inf {n ≥ 1;Xn = i} (2.13)

We need to add positive recurrence when the state space is countable.
This was unnecessary in the finite case because irreducibility implies positive
recurrence.
Positive recurrence ensures that the chain returns to any particular state

often enough to do an effective tour of the parameter space.

Convergence

Since in MCMC methods samples from the target distribution are obtained
only asymptotically, the existence of unique stationary distribution is not the
only requirement we need.
Convergence needs to be imposed, since the realizations of the chain must

be used as sample drawn from the target distribution (the posterior we want
to analyze): the chain needs to be designed in a way that, not only its station-
ary distribution is the target distribution, but also this invariant distribution
converges to the target wherever the chain is initialized.
Convergence pertains the limiting behaviour and it can be expressed as:

lim
n→∞

pij(t) = pj for i, j. (2.14)

A chain having alternating behaviour between two or more states, even
if has a stationary distribution, does not converge. Convergence implies
to impose the chain to be aperiodic. A chain is aperiodic if all states has
probability pij(n) > 0 for all suffi ciently large number of steps n.
The last condition to impose to the chain in order to be used for simu-

lattion purposes is related to the behaviour of the sample average and it is
called Ergodicity.
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Ergodicity

Let θ be the vector of parameters and p(x|θ), p(θ) and p(θ|x) be the likelihood,
the prior and the posterior respectively.

If we have a chain
{
θ(i)
}n
i=1
and we would want to evaluate some features

of the posterior stationary distribution p(θ|x) as the expected value: f(θ) =
E(θ|x), common practice suggest to average the realizations:

Êp(f) =
1

n

∑
f(θ(i)).

It must be assured that the estimate above converges to the corresponding
expectation with respect to the stationary distribution. This means that
an ergodic theorem to be applicable to the chain need to be mentioned.
The main theorem, at least for a distribution on a countable space, is the
following:

Theorem 4 Ergodicity
An irreducible, positive recurrent chain, starting from any initial distrib-

ution, and with stationary distribution p, is such that:

P

{
lim
n→∞

1

n

n−1∑
k=1

f(θ(k))→ E(f)

}
= 1 (2.15)

where E(f) =
n∑
i=1

pifi where {fi} are the values of the function at each

possible state of the chain and f(·) is bounded.

In words, the average of function of realized states converges (almost
surely) to the expectation of the function with respect to the stationary
distribution.
The effects of this results are the following. Suppose we have a target

distribution p and a random variable θ and we construct a Markov Chain
whose unique stationary distribution is p. If we run the chain through many
steps, from any starting point deterministically or randomly chosen, we will
find that the average of the function of the successive realizations

{
f(θ(k))

}
will approach the expectation of the function E(f) with respect to p. Thus,
ergodicity allows to use samples of the chain in order to learn about the



32 CHAPTER 2 BAYESIAN STATISTICS

posterior distribution p(θ|y) and its finite expectation value. Then, MCMC
turns the theory around, the relevant question is not wheter a given kernel
has a unique stationary distribution but whether we can find the kernel
cooresponding to the given stationary distribution.
In MCMC the posterior distribution is the target distribution and the

method wants to find the transition matrix whose stationary distribution is
the posterior.

2.5.4 Gibbs Sampler

In the last decades the use of Markov Chain Monte Carlo methods to simulate
complex non standard multivariate distribution have been increasing since
Gelfand and Smith (1990) introduced the use of Gibbs Sampler into statistical
modeling. The Gibbs Sampler algorithm is one of the best known, and its
impact on Bayesian statistics, following the work of Tanner and Wong [64]
and Gelfand and Smith [33], was remarkable.
In Bayesian inference we are interested in finding the joint posterior distri-

bution of parameters given data. Diffi culties arise when estimation involves
multi-dimensional integrations which are feasible only for small-scale models.
Gibbs Sampling circumvent the problem by partitioning the parameter space
and sampling from the produced full conditional posterior distrubutions.

Let be θ the p-vector of parameters and p(θ), p(y|θ), p(θ|y) the prior, the
likelihood and the posterior respectively. The θ vector can be partitioned in
different ways: θ = (θ(1), θ(2), ....θ(B)) where θ(j) for j = 1, 2, ...B is a scalar
or vector and B the number of partinions. For the simplicity of notation the
following analysis will be limited to the case where B = 2. Gibbs Sampler
constructs the Kernel of Markov Chain using the full conditional distribu-
tions: p(θ(1)|θ(2), y) and p(θ(2)|θ(1), y):

K(θt, θt+1|y) = p(θt+1
(1) |θ

t
(2), y) p(θt+1

(2) |θ
t+1
(1) , y) (2.16)

The algorithm samples from the posterior by running the chain until its
realizations comes from the target distribution (the posterior), since this
kernel satisfies the property guaranteing the convergence to the posterior
distribution (See Appendix A.1).
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∫
K(θt, θt+1|y)p(θ|y)dθ =

∫
p(θt+1

(1) |θ
t
(2), y) p(θt+1

(2) |θ
t+1
(1) , y) p(θt(1), θ

t
(2)|y) dθt(1)dθ

t
(2)

= p(θt+1
(2) , θ

t+1
(1) , y) = p(θt+1|y) (2.17)

The idea is to make move in the chain by sampling in turn from each of
the available conditional components.
The steps of the algorithm is the following:

1. Impose an initial value θ0
(2) and sample θ

1
(1) from p(θ(1)|θ(2), y)

2. Sample θ(2) from p(θ(2)|θ1
(1), y)

3. Repeat the step 1 and 2 S times.

After S replications, the algorithm will lead to a sequence of drawing{
θi
}S
i=1

=
{(
θi′(1), θ

i′
(2)

)′}S
i=1
which can be considerred a sample from the pos-

terio distribution p(θ|y).
Two main issues need to be discussed: the choice of the initial condition

and the number of iteration (the lenght of the sequence) to be undertaken.
Initial condition may affect the simulation results. Therefore, the proce-

dure discards an initial random sample (the burnin sample) with size S0 :{(
θi′(1), θ

i′
(2)

)′}S0
i=1

and just the remaining S1 draw:
{(
θi′(1), θ

i′
(2)

)′}S
i=S0+1

(with

S1 = S − S0) is averaged to produce an estimates of posterior features of
interest.

The generic function of random parameters g(·) can be estimated as:

ĝS1 =
1

S1

S∑
i=S0+1

g(θs)→ E(g(θ)|y). (2.18)

Choosing S suffi ciently large, the weak law of large number garantees
that ĝS1 converges to the true value E(g(θ)|y).

We compute the approximation error
(
g(θ)− g(θ)

)2

using Markow Chain
sequence and setting the lenght S1 allows to rearrange the probability state-
ment to find an approximate 95% confidence interval for E(g(θ|y) of the
form:
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[
ĝS1 − 1.96

σ̂2
g√
S1

, ĝS1 + 1.96
σ̂2
g√
S1

]
. (2.19)

Another diagnostic check, proposed by Geweke [40], is based on the in-
tuition that, if a suffi ciently large number of draws has been taking, the
estimates g(θ), based on the first half of the draws should be essentially the
same as the estimate based on the last half. If theese two estiamtes are dif-
ferent, then initial condition has not ran out of its effects on the first half of
replication and more draws have to be taken.
For this reason the sample of S1 draws is divided into three subset: SA =

{s : S0 + 1, ...., S0 + SA} , SB = {s : S0 + SA + 1, ...., S0 + SA + SB} , SC =
{s : S0 + SA + SB + 1, ...., S0 + SA + SB + SC} , usually for the convergence
diagnostic the sample size assigned to the three subset is :SA = 0.1S1; SB =
0.5S1; SC = 0.4S1.
After discarding the middle set, we performe t-test for the statistic:

CD =
ĝSA − ĝSC
σ̂A√
SA

+ σ̂C√
SC

→ N(0, 1) (2.20)

where ĝSA and ĝSC are the two estimates of E [g(θ|y)] computing from the
draws SA and SC respectively, and σ̂A√

SA
and σ̂C√

SC
are the numerical standard

error
If we can not refuse the null hypothesis of CD = 0, then the convergence

diagnostic approximates zero, the two extreme sub-samples may be asserted
to be indipendent and the number of iterations S1 are suffi cent to calculate
the final posterior results. Rejecting the Null Hypotesis of CD = 0 indicates
that ĝSAand ĝSC are quite different and ore replications need to be taken in
order to satisfy convergence.

2.5.5 Metropolis-Hasting Algorithm

Before descrcibing Metrpolis-Hasting Algorithm, let introduce the prelimi-
nary version: the Metropolis Algorithm, proposed by Metropolis in 1953[55].
Recall p(θ|y) the target distribution which the algorithm wants to sim-

ulate. Metropolis Algorithm postulates the existence of an alternative, but
similar, probability distribution over Θ: q(·), called proposal distribution.
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This distributiotn depends on the current position of Markov Chain θ and
represents the probability of the possible next value of the chain θ′ given the
current position θ; it must to be interpreted as saying that when the chain
is at point θ, the density q generates a candidate θ′.This function must be
symmetric, that is:

q(θ|θ′) = q(θ′|θ) (2.21)

Metropolis Algorithm constructs a chain having p(θ|y) as a stationary
distribution through the following steps:

1. Choose an initial value for θ = θ0 and set t = 0.

2. Draw a candidate θ∗ from q(θ∗|θ0)

3. Calculate the ratio r = p(θ∗|y)
p(θ|y)

.

4. If r > 1 then set θt+1 = θ∗ , otherwise set:

θt+1 = θ∗ with probability r,

θt+1 = θt with probability 1− r;

5. Repeat the step S times.

The probability that the candidate θ∗ is accepted is called acceptance
probability and can be expressed:

α(θt, θ∗) = min

{
p(θ∗|y)

p(θt|y)
, 1

}
(2.22)

The rational underlying the expression is that the chain is likely to ac-
cept the candidate draws that, with respect to the stationary distribution,
are more probable than the current value of the sequence. The chain tends
to move to the region of the parameter space where the probability is higher,
that is the chain tries to simulate a sample from the target posterior distrib-
ution whose draws are the more probable realizations. However it is allowed
to go "downhill", to pass from the current position to a value less probable,
through the probability 1−r. A useful feature of the algorithm is that the in-
tegral referring the normalizing constant p(y) does not have to be calculated
since it cancels from the ratio: p(θ∗|y)/p(θt|y).
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Metropolis Algorithm constructs a chain whose values can be repeated
over time and it depends from the fact that candidate values θ∗ can be
repeatedly rejected.
Appendix 2 demonstrate how Metropolis Algorithm satisfies conditions

guaranteing the existence of stationary distribution.

Let now introduce the generalization of Metropolis Algorithm, proposed
by Hasting. The difference arise from the generalization of the proposal
density that is allowed to be not symmetric; then the acceptance probability
changes in:

α(θt, θ∗) = min

{
p(θ∗|y)q(θt|θ∗)
p(θt|y)q(θ∗|θt)

, 1

}
(2.23)

Choice of proposal distribution

Implementation of the M-H Algorithm required the specification of the func-
tional form of the candidate generating density and its parameters (the loca-
tion and the variance parameters). Very large number of proposal densities
has been discussed in the literaure. Considerable work has been devoted to
the question about how this choice should be made. Let start this section
highlighting the main family proposed in the previous literature.
A common choice is to use as candidate generating densities distribu-

tions depending only on the candidate draw: q(θ, θ′) = q(θ′). These densities
specify the so called Indipendence Chain [66] since proposal distribution is
indipendent on the current location of θ.
Another choice is the so called Random Walk Metropolis-Hastings Chain:

the candidate depends on the current position of the chain through the dis-
tance between the candidate draw and the current realization: q(θ, θ′) =
q(θ′ − θ), then, the candidate can be expressed as: θ∗ = θ + z where z is a
noise. The acceptance probability can be be written as:

α(θ, θ′) =

{
p(θ|y)

p(θ′|y)
, 1

}
(2.24)

Tuning proposal’s parameters is another important issue since the loca-
tion and the spread of the proposal distribution affects the behaviour of the
chain and the effeciency of the algorithm.
Specially the spread affects in two dimensions the effi ciency of the algo-

rithm. Firstly, the variance influences the acceptance rate (the percentage of
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times we accept the candidate draw); secondly the spread affects the moves
of the chain and which region of the support (the parameter space) will be
explored. If the spread is too small, the chain moves too slowly and it will
take longer to cover all the support of the density, moreover the low proba-
bility regions will be under sampled. If the spread is too large, the candidate
draw will be far from the current location, then the acceptance probability
will be small and the chain will remain in the same region of the parameter
space.
In the Random-Walk Metropolis Hasting Algorithm, Gelman and Gilk

[36] proposed to set the acceptance rate equal to 0.25 and the spread equal
to 0.23. This value yields infact to maximize the effi ciency of the algorithm
(measured in terms of the asymptotic variance of the sample mean of the
chain).

2.6 Exchangebility

This brief rewiev can not be ended without spending few words about the
concept of exchangebility. Framed originally by De Finetti [30], exchangebil-
ity is the statistical representation of the symmetry of the behaviour of the
events and it is crucial to the development of subjetive probability.

Consider a sequence of random variables {x1, ..., xn} whose kind of depen-
dence among them need to be specified. The individual random quantities
xi can be supposed to be ‘noninformative’, in the sense that information pro-
vided by the xi’s are independent of the order in which they are collected.
The simple form of dependency which accurately describes this judgement of
‘similarity’or ‘symmetry can be written as:

p(x1, ..., xn) = p(xπ(1), ..., xπ(n)).

The joint density p(x1, ..., xn) does not change under any kind of permuta-
tions π defined on the set {1, ..., n}. A sequence of random quantities is said
to be exchangeable if this property holds for every finite subset of them. The
‘similarity’assumption of exchangeability has strong mathematical implica-
tions expressed by De Finetti in its Representation Theorem. Formally, the
theorem provides an integral representation of the joint density p(x1, ..., xn)
of any subset of exchangeable random quantities:
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Theorem 5 Representation Theorem
If (x1, ..., xn) is an exchangeable sequence of real-valued random quanti-

ties, then there exists a parametric model p(x|θ), labeled by some parameter
θ ∈ Θ which is the limit of some function of the xi’s, and there exists a
probability distribution for θ, p(θ), such that

p(x1, ..., xn) = lim
n→∞

∫
p(x1, ..., xn|θ)p(θ)dθ (2.25)

If a sequence of observations is assumed to be exchangeable, then the
Representation Theorem proves that there must exist:

• a parametric model p(x|θ)

• a parameter θ

• a probability distribution for θ with density p(θ).

where p(θ) describes the prior available information about the parame-
ter, then a Bayesian approach is required. In short, exchangeability is a
justification for Bayesian inference.

Any sequence that is Independent and Identically Distributed (IID) is also
exchangeable, though the converse is not true: all exchangeable sequences
are not IID. Exchangeable sequences are identically distributed, just not
necessarily independent. Exchangeability is therefore a broader concept than
IID. While frequentist inference makes heavy use of IID, Bayesian inference
more commonly uses exchangeability.
A popular benefit of exchangeable sequences in Bayesian modeling is that

exchangeability allows more complicated models as the hierarchial models I
will proposed in the last chapter of the thesis.

Exchangebility provides a link between the frequency and the subjective
view of probablity, a way of combining empiricism and pragmatism.
The starting point is a refusal of the notion of truth, and the related

notions of determinism or immutable and necessary laws. De Finetti reaf-
firms instead the concept of science seen as a human activity, a product of
thoughtwhere probability is its main tool.
"no science... - says De Finetti - will permit us to say: this fact will

come about because it follows from a certain law, and that law is a asolute
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truth. Still less will it lead us to conclude skeptically: the absolute truth does
not exist...what we can say is this: I foresee that such a fact will come about
because past experience and its scientific elaboration by human thought make
this forecast seems reasonable to me".
Probability is precisely what make a forecast possible and because a fore-

cast is always refered to a subject with its experience and it convinction, the
logical instrument that we need is the subjective theory of probability".
Probabilism represents an escape from the antithesis between absolutism

and skepticism and its core is the subjective notion of probability.

Inference can be entirely performed by exchangebility in combination
to the Bayes Therorem. If the notion of probability as degree of belief is
grounded in an operational definition (betting quotient), probabilistic infer-
ence, taken the subjective sense, is grounded on the Bayes rule. Moreover,
Bayesianism represents the crossroad where pragmatism and empiricismmeet
subjectivism. One need to be Bayesian in order to be a subjectivist, but on
the other hand subjectivism is a choice to be made if one embrace pragmatism
and empiricism as philosophy.





Chapter 3

Electricity Market

This chapter offers a brief analysis of the main characteristic of Italian Elec-
trisity sector, focusing on the Italian Power Exchange (IPEX). The establish-
ment of the Electricity Market derived from the deregulation process which
has involved Electricity sector. Since 2004, the exchange of electricity has
been opened to competition and the definition of a proper market structure
had been the most challenging part of the deregulation process: electricity
market must be infact organized in a way that preservation of competition
and the cover of all demand profiles mus be constantly ensured.

3.1 Electricity Industry

Electricity industry is a leading industrial sector since it is a fundamental
input for the production processes in any industrialised country. Its strate-
gic importance for economic development and its social and environmental
impact imposes an effective regulation. For this reason it is not surprising
that the electric sector was regulated by public commissions and the tariffs
were kept fixed over long periods of time.
The electricity is not an energy source but an energy carrier: it can

be produced from any source. Some sources infact must necessarily pass
through the electric vector in order to be exploited (eg, nuclear, hydro, other
renewables). Hence, we can easily understand, in the energy policy, the
importance of diversifying energy sources.
The provision of electrical service is a capital intensive activity both in

the production phase and in the distribution phase.

41
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The grid system, which characterizes the national electricity system, in-
volves that the transmission and dispatching activities are subject to very
stringent technical constraints, such as:

• Instantaneous and continuous balance between the amount of energy
injected into and that withdrawn from the grid. It is said infact that
electrical system does not admit neither storehouse nor tails. It is a

just-in-time prototype: production and consumption must be perfectly
synchronised, in order to not compromise the flow in the grid. If supply
and demand are not equal at every moment, the only possible equilib-
rium is the black out. The instantaneous balance between supply and
demand and the diffi culties connected to trasmission congestions are
physical problem strictly linked to market design issues and to compe-
tition policy.

• The maintainance of the frequency and the voltage of the grid within
a narrow range, in order to ensure the safety of facilities.

• The need for the energy flow on each electrode to not exceed the max-
imum permissible transit on the electrode itself.

Any deviations from the above mentioned limits, for more than a few
second, can quickly lead the system to the black-out. The characteristics of
the technologies and the ways in which electricity is produced, transported
and consumed make it diffi cult to comply with these constraints.
In particular, diffi culties arise from three factors:

1. Variability of demand: power demand exhibits a remarkable vari-
ability both in the short term (hourly) and in the medium term (weekly
and seasonal).

2. Lack of storage and dynamic constraints in real-time adjust-
ments of supply. The crucial features of electricity is the impossi-
bility of storing it in a economically feasible way. It can not be stored
in significant quantities, except indirectly, just in the case of the ac-
cumulation batteries or the hydroelectric plants through the quantity
of water contained in their basins. Moreover, the electrical systems
have minimum and maximum limits binding the power flow as well as
unit commitments need minimum time to start and change their power
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output. It follows that the optimal set of unit commitments, give the
available technology, is that it works with a different composition of
fixed and variable costs.

3. Network externalities: supply and demand must be physically con-
nected via a structure of meshed grids. The electricity is injected into
or withdrawn from the grid nodes. All the nodes are connected to
each other, and once energy is fed into the grid, it engages all nodes
available as in a system of communicating vessels: the elettrical flow
chooses a path according to the laws of Ohm (the path of least resis-
tance), determining the balance between injections and withdrawals;
this makes the path of energy no traceable, so any local imbalance not
promptly corrected spread across the grid through changes in voltage
and frequency.

Electrical System is a serivce, since there is simultaneity between supply
and consumption and it accounts for five main activities.

• Generation: it pertains the identification of the source to be used, the
construction of the power stations, their operating process and their
maintenance. Since generation can take place through a variety of
tecnologies, from steam power stations to solar etc.., each technologies
has different marginal and fixed costs. For this reason, in every national
markets, a wide range of plants covering electricity demand at the same
time.

• Transmission: it is a regulated activity related to transfering elec-
tricity over long distance through the construction, management and
maintenance of high-voltage grid.

• Distribution: it pertains construction, management and maintenance
of low-voltage grid which transfers electricty to the end-consumption
centers.

• Retail: it refers to the sale contracts and the management of relation-
ships (connection, metering and billing) with small-customers.

• Dispatching: it is the main task of Indipendent Syspem Operator and
involves the monitoring and the management of the transmission grid.
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Moreover, System Operator coordinates generators’activity quickly re-
sponding to the fluctuation of demand and guarantees that all market
partecipants have equal access to the network.

Until 15 years ago all thoose functions were regulated and subjected to
the control of central gouvernement. Electricity industry has been infact
characterized by economies of scale in the generation and by the necessity
of an extensive trasmission grid in order to deliver the generated electricity
to the end-consumers. All theese characteristics made the sector a natural
monopoly and imposed electricty firms to be vertically integrated across the
different functions. Only one firm was charged with all stages of the supply
chain. The monopolist had all the information needed to schedule all the
power plants and to minimize the generation costs.
In the last decades liberalization process started in most of the developed

countries, the ownership in the electricity sector became private and industry
has been split up into the different functions.

3.1.1 The Deregulation Process

The liberalization of the electricity sector has led to overcome the system of
vertically integrated monopoly. Generation and retail functions have become
open to competition.
Even under deregulation, instead, trasmission and distribution have re-

mained (have been kept) monopolistic: because of their structure, no one
could provide competing services in those two sectors. Trasmission and dis-
tribution networks are considered infact to be natural monopolies and the
access to them must be granted in order to ensure that generators can reach
their consumers. Electrical grid is an essential facility and all competitors
in the other functions need to have not-discriminatory access to it. For this
reason the Indipendent System Operator (ISO) has been in charge with the
reliability of the system and the continuous balance between demand and
supply. Finally it is important to provide incentives to the investements for
new construction and development of the lines.
There are two different solutions for scheduling the unit commitment and

ensure to cover demand profiles: the passing dispatching and the merit order
dispatching.
In the passing dispatching all the operators who sell electricity through

bilateral contracts are asked to produce. The energy price is determined by
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the parties.
In the merit order dispatching operators must submit offers for sell in

a centralized market (power exchange). All offers for sale are selected in
ascending order of price, until the demand is met. The price is determined
within the stock exchange. In most electricity markets both approaches are
used.
The Italian Power System is divided into portions of transmission net-

work, this kind of configuration has been defined for the safety of the trasmis-
sion grid and for a quick removal of any congestion caused by trasmission
constraints. This portion of trasmission grid are defined zones, and they can
be physical geographical areas, virtual areas, or limited production poles.
These areas can be summarized in:
6 geographical zones: North, Center North, Center South, South, Sicily,

Sardegna.
8 virtual zones: Austria, BSP, Corsica, Croatia, France, Greece,Slovenia,

Switzerland.
4 national virtual zones: the limited production poles consisting in a

single unit of production with limited interconnection capacity. They are:
Brindisi, Foggia, Pirola, Rossano.
Each geographical or virtual zone is a set of offer points. The offer points

is the minimum unit in respect of which injection and withdrawal programs
are scheduled as a result of the acceptance of offers to sell or purchase in the
Electricity Market or in execution of bilateral contracts.
When electricity is injected, usually the offer point coincides with a sin-

gle plants of generation (the unit commitment) which converts the energy
provided by any primary source into electrical energy.
In the case of withdrawal schedules, the offer points to buy may corre-

spond either to single unit of consumption or to aggregate of sampling points.

3.1.2 The Design Factors

Transition from state-owned monopolies to competitive markets was not al-
ways smooth, skepticism and concernes had been raising in many countries;
market structure affects infact competition and for this reason the design of
deregulated electricity markets offer economists a changelling opportunity.
They have been attempting to design well functioning markets that gives
players the correct incentives to improve production effi ciency and limit mar-
ket power. In the recent years many economists have focused on the effects
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that market design may have on equilibrium prices. In this new context, two
major problems need to be faced:
1) How to correctly schedule the different power plants given the oper-

ators’availability in order to minimize the costs of providing the service in
the short term
2) How to guide investment decisions in order to minimize the generation

cost in the long run.
Together with the production effi ciency purpose, power market has to

be designed in a way to safeguard competition, limiting the market power
of supplier and assuring end-consumers of competitive prices. The market
structure affects infact the consumer reactivity to change in price, that is
the elasticity.
The main design factors impacting on demand elasticity are listed below.

• Optional versus compulsory pool: if partecipation in the pool mar-
ket is compulsory, consumer are fully exposed to the pool price. On
the other hand, if economic agents can make bilateral agreements with

producers they are shielded from price volatility. Even in a compul-
sory market consumers may reduce volatility risk by financial contracts
(contracts for difference).

• One or two sided market: demand can be taken costant on the
basis of load forecasting programs or purchasers’bids can be ranked in
a descending order forming in this way market demand. Usually, when
eligible consumers take part in the pool market and directly demand
their energy loads they can indicate the price they are willing to pay.

• Simple or complex bid: offers and bids submitted can show just a
single quantity and price or they can be designed to reflect the overall
structure of running costs faced by plants. In the first case generators
assume the risk related to the start-up of its plants, while in the latter
case this risk is borne by pool market. Theoretically, when unit com-
mitments can structure complex offer taking into account the overall
generation costs, the resulting prices are usually lower since producers,
reducing the risk they bear, reduce their generation costs. On the other
hand, when bids are simple, volatility is reduced and price behaviour
is more predictable.
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• Market Timing: prices can be determined ex-ante (before the deliv-
ery takes place) or ex-post (when the delivery is executed). Ex-ante
prices admit consumers to react and change their consumption profiles.
To an economist prespective, fixing prices ex-post is deeply unsatisfac-
tory, since it denies any real interaction between supply and demand.

• Capacity payments: generators can be paid either on the basis of the
generator capacity they will make available or on the basis of the elec-
tricity they actually produced. When the payment refers to capacity,
the goal is to encourage producers to keep their profitable units avali-
able ensuring to cover all the demand profiles. However the capacity
profits and the resulting prices increase non-linearelly as the difference
between the capacity and the actual load decrease during the peak
periods.

• Geographically differentiated pricing: price paid by end-consumers
can be uniform over the all market or can be geographically differ-
entiated because of congestions due to trasmission constraints. The
purpose of the single price is not to penalize the geographical areas
characterized by less effi cient power plants or less capacity load avail-
able. On the other hand, when price are differentiated, there are more
incentives for end-users to pay more attention to their consumption
profile.

• Price capping: limiting value of the electricity price can allow ratio-
nal customers to stop consuming when the prices exceed this values,
making demand more predictable.

3.1.3 The Italian Power Exchange

As in other international experiences, the creation of a market responds to
two specific requirements:
• promoting competition in electricity generation, sale and purchase, un-

der criteria of neutrality, transparency and objectivity, through the creation
of a market place;
• ensuring the economic management of an adequate availability of an-

cillary services.
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The organization and the management of the italian electricity market
has been entrusted GME. Unlike other European markets, Italian Power
Exchange (IPEX) is not a purely financial market aimed only to the definition
of prices and quantities, but it is a physical market where injection and
withdrawal profiles are scheduled and really delivered.
The Electricity Market is articulated in the Spot Electricity Market (MPE),

Forward Electricity Market and the Financial Derivatives Market (IDEX).
The Spot Electricity Market is divided into three submarkets:
The Day-Ahead Market (MGP), which is the venue for the trading

of electricity supply offers and demand bids for each hour of the next day.
All electricity operators may participate in the MGP. GME accepts Offers
and Bids by the merit order, taking into account the curent trasmission
constraints. Accepted supply offers are remunerated at the Zonal Clearing
Price, while accepted demand bids are remunerated at the National Single
Price (PUN). The accepted Offers/Bids determine the preliminary Injection
and Withdrawal Schedules of each Offer Point for the next day.
The Intra-Day Market (MI), which has replaced the existing Adjust-

ment Market, it is venue for the trading of electricity supply offers and de-
mand bids which modify the Injection and Withdrawal Schedules resulting
from the Day-Ahead Market. GME accepts the Offers and Bids submitted
into the MI by merit order, taking into account the Transmission Limits
remaining after the Day-Ahead Market. Accepted Offers and Bids are remu-
nerated at the Zonal Clearing Price and they Bids modify the preliminary
schedules determining the revised injection and withdrawal schedules for the
next day.
TheAncillary Services Market (MSD), it is the venue for the trading

of supply offers and demand bids in respect of ancillary services. This mar-
ket is exentially used to acquire resources for relieving intrazonal congestions,
procuring Reserve Capacity and balancing the injections and withdrawals in
the real time. Participation in the MSD is restricted to units that are autho-
rised to supply ancillary services and to their dispatching users. Participation
in the MSD is mandatory. The MSD produces two separate results:
1) the first result (Ex-Ante MSD) concerns Offers and Bids accepted on

a scheduled basis for relieving congestions and creating an adequate reserve
margin;
2) the second result (ex-post MSD) concerns Offers and Bids accepted

in real time for balancing injections and withdrawals (by sending balancing
commands). The Offers and Bids accepted in the MSD determine the final
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injection and withdrawal schedules of each Offer Point. In the MSD, Offers
and Bids are accepted by economic merit order, taking into account the need
for ensuring the use of the system. Offer and Bids accepted in the MSD are
valued at the offered price (the Pay as Bid mehod).

3.2 The Day-Ahead Market

The Day-Ahead Market (MGP) aims at the wholesale trading of electricity
where hourly blocks of power for the next day are negotiated. In this market
both the injection and withdrawal programs for the next day are defined in
oreder to reach the equilibrium prices and quantities.
The MGP is organized according to an implicit double auction model and

the most of the transactions takes place in this market. The session opens
at 8 a.m. on the ninth day before the delivery-day and closes at 9.15 a.m.
on the day before the delivery is executed.
During the session, market partecipants submit offers to buy or sell that

indicate the amount of energy and the maximum price (or the lowest price)
at which they are willing to buy (or sell). In particular:

• The offers to buy (BID) represent the willingness to purchase an amount
of energy that does not exceed that specified in the offer at a price no
higher than that reported in the same offer. In the demand side oper-
ators can refer their bids only to the withdrawal unit points (sampling
unit points).

• The offers to sell (OFF) express instead the willingness to sell an
amount of energy not greater than that specified in the offer and at
a price not lower than that indicated in the same offer. In the supply
side operators can relate offers only to the injection points. If the of-
fer is accepted, the producer undertakes to enter in the network, in a
given period, the amount of electricity specified in the offer. Moreover,
each offer, to sale and purchase, must be consistent with the physical
constraints of the corresponding unit point.

The Day-Ahead Market is a zonal market, reflecting the structure which
the national trasmission grid is divided in. Each zone is characterized by
an insuffi cient interconnection capacity and when a congestion occurs the
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selling price is zonal differentiated: selling price is lower in the upstrem area
of congestion and higher in the downstream ones. In depth, when the market
session closes, the GME start the process for the resolution of the market.
For each hour of the next day, the algorithm accepts all the bids and offers in
order to maximize the value of trading, within the limits of maximum transit
between zones.
The process of acceptance can be summarized as follows:
All offers to sell are sorted according an ascending price order forming ag-

gregate supply curve,while bids are ordered by descending price order drawing
the aggregate demand curve.
The intersection between the two curves derives the total quantity traded,

the equilibrium price, the accepted BID and OFF.
If electricity flows resulting from the programs do not violate any tran-

sition constraints, the equilibrium price is unique for all the zones. The
accepted offers to sale are those whose sale prices are not higher than the
equilibrium price, while the accepted bids are those whose purchase prices is
not lower than the equilibrium price.
If at least one trasmission constraint is violated, sale price are zonal dif-

ferentiated and the algorithm starts the so called "Market Splitting Mecha-
nism". It splits infact the market into two zones, one for the export, which
includes all zones upstream of the bond, and one for the import, which in-
cludes all areas downstream of the bond, repeating in each of the two areas
the process described above: i.e. it derives in each zone the corresponding
aggregate supply and demand curve. The outcome are two equilibrium zonal
price zone (pz1 and pz2). In particular, pzi is greater in the area of import
and is smaller in the area of export. If, within each zone, the resulting equi-
librium quantities violate further transition constraints, the splitting market
process goes on within the zones in order to obtain an outcome consistent
with the grid constraints.
With regard to the purchase price of electricity, GME has implemented an

algorithm that, given congestion and differentiated zonal sale prices, apply
just a single national purchase price (PUN), that is the average of the zonal
sale prices weighted with the zonal consumptions. The PUN applies only to
withdrawal points belonging to national geographical areas.
The mechanism of market splitting is an ’implicit auction" for the non-

discriminatory allocation of the transit rights.
Programs resulting from bilateral negotiations contribute to the deriva-

tion of the outcome of the MGP. The energy traded through bilateral contract
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participates to the process described above since it engages itself portion of
the transmission capacity available and contributes to determine the zonal
consumption weigths used for the computation of PUN.

3.3 Dataset and Descriptive Statistics.

The aim of this session is to provide an exhaustive analysis of Electricity
Market, using data referring the demand side. The preliminary investigation
of the Dataset I used wants to highlight the main features of the Day-Ahead
Market as:

• the portion of elastic and inelastic bids

• the average relative frequency and the portion of market demand cov-
ered by the Single Buyer

• the average relative frequency and the portion of market demand cov-
ered by Bilateral Contracts

• the frequency of market segmentation

• the national single purchase price (PUN).

3.3.1 The GME Dataset

The Data Gathering Process had been disclosed an challenging task, since it
had involved the download of GME daily data and their collection in monthly
dataset starting from January 2011 to June 2012. At the end of the procedure,
1.5 millions of raw observations was available in each monthly Dataset.
Each raw observation is identified by the following variable:
Purpose: Purpose of BID or OFF, where BID pertaining the partici-

pant’s purchases and OFF the participant’s sales.
Status: the state characterizing bid and offer (Accepted or Rejected)

after market execution.
Unit Reference: The identification number of the unit point respect of

which the injection or withdrawal programs are defined.
Interval: The relevant period to which the bid or the offer refers.
Bid Offer Date: The flow date of the bid or the offer.
Transaction Reference: GME’s identifier of the bid/offer.
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Merit Order: The ranking of the offers derived by the market solution
alghoritm.
Operator: The registred name of the partecipant.
Zone: The zone to which the unit belongs.
Transaction Reference: The identification number of the offer.
Grid Supply Point: The relevant nodes of grid which the unit is asso-

ciated with.
Bilateral: it is categorical variable that indicates whether the bid or the

offer comes from wholesale market or bilateral contract.
Quantity: The volume submitted by partecipants
Energy Price: The price submitted by partecipants.
Awarded Quantity: The volume awarded by the market
Awarded Energy Price: The price awarded by the market.
First we depurated datasets from observations referring to the supply side

(OFF).
In each monthly dataset Bid are about 400-450 thousand observations,

accounting for the 20-25% of the total amount of offers.

3.3.2 Dataset Preliminary Analysis

Deep investigation on bid datasets shows that there is a huge amount of
observations where price is not specified, expressing the maximum willingness
to pay (that is lower responsiveness to a change in the energy price) since,
in principle, they are willing to pay any price resulting from market clearing
mechanism. These BIDS refer to consumers which are not aware of the
market price signals and have a perfectly inelastic behaviour. GME assigns
to these bids a fictitious price equal to the supply price cap that is equal to
3000/MWh.
This kind of information need to be processed into the model, since higher

willingness to pay resolves in lower level of elasticity and denotes the presence
of different kinds of consumers. In the next chapter it will be discussed in
depth how to manage the presence of heterogeneous buyers with different
price reactivity. At the moment, let be shown tables comparing the hourly
average absolute frequencies and the hourly average quantities referring to
the both kinds of bids.
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 437.19 6.48 437.19 6.48 432.65 5.65 422.47 8.63 419.10 6.48 423.43 10.73
2 440.94 9.26 440.94 9.26 435.68 8.65 425.23 9.40 421.77 7.81 424.27 11.83
3 440.94 10.39 440.94 10.39 435.52 10.32 424.00 10.10 421.71 8.35 424.70 12.10
4 440.74 11.45 440.74 11.45 436.13 11.90 423.53 10.70 421.77 8.68 424.63 12.53
5 440.84 11.84 440.84 11.84 435.71 11.29 423.73 10.87 421.58 8.68 424.63 12.40
6 441.61 9.65 441.61 9.65 434.97 7.65 424.60 9.93 421.94 8.97 425.53 12.20
7 440.39 9.32 440.39 9.32 433.06 5.61 421.00 8.30 419.23 8.42 421.03 11.80
8 437.97 8.03 437.97 8.03 428.97 7.26 419.30 7.53 416.71 9.32 419.13 9.93
9 431.65 7.10 431.65 7.10 423.48 3.81 413.53 5.30 411.10 5.03 415.37 9.13

10 432.29 6.23 432.29 6.23 425.10 2.90 411.77 4.93 409.94 3.90 414.97 8.20
11 432.65 6.19 432.65 6.19 424.68 3.06 412.87 5.37 410.35 4.29 415.10 7.73
12 432.74 6.77 432.74 6.77 425.16 3.48 412.67 5.53 410.29 4.74 415.27 7.73
13 434.26 9.42 434.26 9.42 424.58 5.68 411.33 6.63 410.10 9.06 414.03 10.10
14 434.58 10.42 434.58 10.42 424.48 6.23 411.27 6.83 409.61 8.13 414.13 9.97
15 434.26 8.39 434.26 8.39 423.94 5.48 410.77 6.57 409.71 5.42 414.70 9.40
16 431.06 7.23 431.06 7.23 423.81 4.94 409.47 6.57 409.42 4.97 414.93 9.20
17 432.61 7.35 432.61 7.35 424.26 4.71 409.73 6.53 409.13 5.10 414.77 8.97
18 432.74 3.84 432.74 3.84 422.00 4.52 409.47 7.53 411.00 5.81 412.67 9.63
19 431.90 4.03 431.90 4.03 422.39 2.26 409.37 7.27 410.13 7.97 410.73 9.20
20 432.03 5.71 432.03 5.71 423.42 1.16 412.07 7.17 411.39 7.74 412.60 9.13
21 435.00 6.65 435.00 6.65 428.81 2.81 420.87 4.57 418.48 4.65 420.13 9.37
22 433.84 6.42 433.84 6.42 429.65 3.90 419.17 6.13 418.55 4.94 419.67 8.27
23 435.10 5.26 435.10 5.26 429.23 4.39 419.03 5.67 418.06 5.35 420.00 8.63

24 437.45 6.81 437.45 6.81 415.55 4.45 418.47 6.63 415.90 5.94 419.17 10.20

January Febbraio March April May June

Elastic-Inelastic Bid. Houly Average Abs. Frequency.Jul-Dec 2011.
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 432.26 10.13 425.06 9.84 425.83 10.60 428.97 11.45 424.93 12.60 422.45 13.97
2 432.87 10.26 425.42 9.74 425.20 10.97 429.74 11.39 427.23 13.90 422.52 15.52
3 432.35 10.00 424.84 9.84 424.20 11.00 430.42 11.61 425.43 15.57 421.48 16.81
4 432.03 10.23 424.16 10.00 424.03 11.00 430.45 12.26 425.37 16.33 420.58 18.48
5 432.13 10.26 424.10 10.03 424.27 11.00 430.97 12.23 426.73 16.10 421.03 18.97
6 433.35 11.29 425.32 10.94 426.57 11.57 431.45 12.29 428.77 15.67 421.65 17.94
7 426.32 10.42 416.68 10.32 427.33 10.50 426.23 11.48 426.50 15.47 420.23 15.55
8 424.03 10.55 416.84 9.97 427.27 9.73 424.97 11.61 425.93 16.07 419.74 16.48
9 421.77 9.52 411.74 10.10 423.57 9.47 421.65 11.35 421.20 15.20 416.77 16.39
10 421.23 7.65 411.52 9.52 422.13 9.17 421.13 11.61 421.17 16.10 415.39 17.45
11 420.77 6.61 409.74 9.32 421.33 9.43 420.71 12.00 420.47 17.13 415.35 18.55
12 420.58 6.58 410.52 9.35 420.53 9.63 420.90 12.16 420.80 17.33 414.58 19.06
13 419.39 8.68 410.19 9.48 417.57 10.10 417.68 12.52 416.20 18.17 411.52 19.26
14 420.77 10.32 410.13 9.81 418.60 10.63 417.71 12.26 417.73 16.57 412.55 18.19
15 420.94 9.81 410.29 9.52 419.50 10.43 418.16 11.48 419.03 15.30 412.84 17.35
16 421.03 9.35 410.45 9.35 421.00 9.93 418.87 11.10 419.20 15.03 413.00 17.32
17 422.45 8.90 412.61 9.10 422.33 9.47 419.06 11.06 421.40 16.27 416.90 17.52
18 421.39 8.29 412.68 8.77 420.73 9.83 418.39 11.26 426.93 10.50 420.03 12.68
19 420.77 9.03 412.42 8.55 419.67 9.57 419.74 11.29 424.83 11.77 419.77 14.23
20 420.06 9.10 412.52 8.71 419.33 9.13 423.42 9.19 424.70 15.37 421.68 15.16
21 426.87 9.97 419.10 9.16 424.43 9.67 425.74 10.48 426.93 17.03 422.74 17.13
22 427.06 8.42 418.03 9.42 423.07 10.53 424.61 11.58 424.03 15.13 418.48 15.65
23 425.48 8.87 416.84 9.03 422.90 10.20 421.32 11.06 419.63 13.17 414.35 12.81

24 425.81 9.61 417.19 9.19 422.67 10.17 421.52 11.29 420.40 11.77 416.26 11.58

DecemberJuly August Septmber October November

Elastic-Inelastic Bid. Houly Average Abs. Frequency.Jul-Dec 2011.
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 465.65 12.90 464.58 13.32 460.60 15.13 460.29 15.29 475.03 22.00 479.13 23.16
2 464.48 13.77 462.52 13.23 460.90 15.03 461.39 17.84 473.10 28.13 478.10 30.35
3 464.10 13.97 461.87 13.10 460.83 15.93 461.26 20.26 472.23 32.30 478.32 37.29
4 463.52 14.45 461.48 12.97 461.40 17.07 461.19 21.94 472.30 34.03 478.06 41.19
5 463.03 14.58 461.55 13.13 460.40 16.53 461.19 21.87 471.40 34.17 477.74 42.55
6 462.48 15.55 461.03 13.32 461.10 16.63 462.55 21.23 474.23 30.23 478.87 36.97
7 464.23 17.42 461.55 13.03 463.30 14.73 463.97 17.13 477.83 20.73 478.52 26.97
8 464.10 17.35 459.58 13.39 461.13 12.23 466.71 10.58 475.93 14.10 480.26 17.74
9 466.58 15.00 460.61 13.03 460.97 10.57 465.10 9.06 475.23 12.13 482.61 15.35
10 468.84 15.97 462.35 13.84 461.33 11.07 466.29 9.32 477.07 12.83 484.65 14.94
11 469.32 18.13 463.23 15.58 461.57 11.27 467.06 10.00 479.87 14.10 484.84 18.13
12 469.48 20.48 464.81 16.81 464.30 12.83 468.26 12.32 481.33 16.50 484.48 22.39
13 468.45 25.00 465.26 17.58 463.60 15.77 466.39 14.77 480.90 19.83 483.03 27.71
14 468.35 27.00 465.65 19.19 464.50 20.43 468.10 16.39 480.70 20.30 482.26 28.00
15 468.61 25.81 465.94 19.06 465.37 19.47 469.48 14.68 480.90 16.13 482.03 21.29
16 468.29 23.13 466.16 17.81 464.97 17.30 469.74 12.35 479.27 13.87 481.77 16.29
17 466.58 19.45 464.58 15.35 462.23 13.47 468.74 11.03 478.97 11.43 481.55 14.68
18 463.45 15.58 462.94 12.71 461.00 10.93 466.48 11.55 479.00 8.47 480.06 12.00
19 460.74 11.87 461.16 10.13 458.37 10.93 465.74 12.32 477.43 9.27 477.48 12.00
20 459.23 9.16 459.06 10.48 457.83 12.27 464.29 10.06 475.50 9.73 477.58 12.10
21 461.00 10.35 461.71 11.19 460.77 12.57 463.61 10.77 477.70 10.83 478.03 13.13
22 461.71 10.06 461.32 11.61 458.03 13.47 462.71 11.16 477.60 10.77 476.90 13.81
23 460.94 11.13 459.55 12.81 457.20 13.43 463.42 10.61 475.57 13.00 473.52 14.32

24 461.77 12.16 458.84 12.23 458.97 13.27 463.87 10.97 475.73 14.83 473.29 17.35

July August September October November December

Elastic Inelastic Bid. Hourly Average Abs. Frequency. Jul-Dec 2012
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 65.27 17.94 68.31 15.57 67.66 8.04 66.68 5.40 68.26 4.52 71.34 8.10
2 61.61 20.17 64.30 21.37 63.83 11.89 62.90 5.61 64.30 6.23 67.54 9.27
3 60.14 23.25 62.67 25.05 62.28 15.32 61.32 5.78 62.34 5.46 65.55 11.66
4 59.33 24.98 61.94 27.11 61.62 17.79 60.54 6.56 61.56 7.24 64.60 11.77
5 59.61 26.82 62.26 26.21 62.06 16.28 60.90 6.15 61.79 6.56 64.80 11.63
6 61.65 24.86 65.45 24.53 64.57 9.59 63.02 5.57 63.10 9.40 64.80 12.06
7 69.34 13.43 73.95 16.81 71.43 10.95 68.64 5.10 68.21 6.45 70.17 11.66
8 80.24 16.76 86.07 13.14 82.89 16.73 78.47 7.70 79.60 20.57 80.94 12.24
9 91.67 13.48 98.89 9.94 95.35 12.26 89.36 3.75 90.66 9.46 92.11 10.85
10 96.79 16.77 103.48 13.42 98.86 9.79 93.60 3.37 94.96 5.90 97.17 7.81
11 97.91 16.82 103.97 13.07 99.17 10.78 93.70 3.58 95.65 5.78 98.54 8.13
12 97.61 17.76 103.33 14.12 98.33 13.64 93.14 3.58 95.38 7.43 98.65 8.78
13 92.83 26.68 97.61 15.46 93.88 9.40 88.73 6.20 90.91 15.59 95.07 12.48
14 90.36 23.40 94.84 19.58 91.97 12.93 86.60 5.80 89.40 13.42 93.53 10.88
15 91.79 19.02 96.39 16.64 93.45 11.39 87.60 3.49 90.71 8.49 94.38 8.17
16 93.50 16.43 97.78 13.90 93.93 10.59 87.94 3.49 91.07 7.16 94.54 7.91
17 95.82 18.84 98.94 11.79 94.40 10.24 87.69 3.80 91.08 5.39 95.04 7.03
18 101.55 10.88 102.14 16.51 95.33 10.88 86.53 3.11 89.27 7.90 94.16 7.10
19 102.40 13.01 107.16 12.81 99.74 6.06 86.11 4.75 88.27 11.84 92.75 8.86
20 100.43 19.52 105.85 9.10 101.85 9.10 88.66 6.16 88.70 13.57 91.73 8.75
21 93.91 16.95 98.33 11.35 96.15 4.77 91.32 2.96 89.36 4.10 90.02 6.69
22 88.31 14.09 91.91 14.81 89.89 4.49 87.51 4.18 88.62 5.98 90.68 6.41
23 80.12 15.89 83.18 14.89 81.78 6.73 80.37 3.59 82.03 7.74 85.37 6.17

24 72.35 15.81 75.09 15.20 74.77 5.60 73.23 4.36 75.17 4.60 78.67 6.89

January February March April May June

Elastic-Inelastic Bid. Hourly Average Quantity Bid. Jan-Jun 2011
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 77.33 5.73 67.60 8.70 71.56 15.90 67.34 13.56 66.29 18.75 65.66 23.62
2 73.50 5.87 64.19 7.79 68.35 16.98 64.30 13.95 63.11 19.98 62.32 25.38
3 71.28 5.82 62.33 8.00 66.78 17.09 62.44 13.77 61.50 22.34 60.67 25.92
4 70.15 5.62 61.21 8.23 65.99 17.13 61.80 15.88 60.75 23.06 59.61 27.54
5 69.98 5.97 60.95 8.33 66.01 17.08 61.86 15.10 60.85 23.10 59.71 27.33
6 70.40 5.49 61.87 7.36 67.62 16.06 63.91 13.82 63.38 19.36 62.02 24.88
7 74.60 6.76 64.39 9.68 73.69 15.46 71.68 12.43 71.38 18.58 69.38 23.19
8 84.45 10.07 70.63 13.34 81.80 17.15 82.06 15.03 82.01 22.97 79.80 25.71
9 95.34 9.46 79.55 12.51 92.07 16.99 91.32 14.07 92.95 23.22 90.56 27.39
10 101.09 8.03 84.83 10.99 96.70 17.15 94.65 14.15 96.38 23.49 95.14 29.40
11 103.12 8.35 86.99 10.72 98.02 17.10 94.95 14.06 96.77 24.45 95.52 30.03
12 103.74 9.38 87.68 10.67 98.28 16.99 94.54 13.91 96.38 24.97 95.13 30.91
13 100.86 10.17 86.44 10.64 94.68 16.53 90.64 14.57 92.47 25.29 91.47 30.34
14 99.37 12.06 85.16 11.07 92.88 16.43 88.77 14.02 90.32 24.18 88.82 28.74
15 100.27 11.76 85.20 10.94 94.03 16.66 89.79 13.83 91.88 21.79 90.04 28.29
16 100.37 10.28 85.08 10.95 94.21 17.19 90.08 13.43 93.29 23.49 91.59 29.03
17 100.74 9.85 85.26 10.57 94.66 17.32 90.83 13.25 96.89 23.49 95.84 27.81
18 99.78 9.23 85.24 9.36 94.03 16.67 91.17 13.78 102.56 22.06 102.30 22.81
19 97.87 8.36 84.92 9.51 93.29 17.68 95.07 12.76 102.74 20.98 101.86 23.13
20 97.19 7.73 85.74 8.35 97.80 16.21 100.00 14.10 101.52 21.12 100.08 24.06
21 95.11 6.26 87.73 7.97 97.19 16.15 94.12 12.61 94.56 22.09 93.06 25.95
22 95.68 4.44 86.16 7.09 91.61 15.14 88.11 11.59 88.56 19.37 87.59 24.93
23 90.67 6.57 80.29 7.64 84.28 16.08 81.22 12.33 81.10 19.45 80.69 21.50

24 84.15 6.84 74.43 7.65 77.83 15.85 74.07 13.91 73.43 18.94 72.93 21.54

November DecemberJuly August September October

Elastic-Inelastic Bid. Hourly Average Quantity Bid. Jul-Dec 2011
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 62.15 20.48 65.21 38.11 64.28 16.30 58.66 14.05 59.57 14.50 63.94 11.27
2 58.61 23.98 61.58 40.72 61.30 16.48 55.47 13.45 56.66 13.69 60.66 10.32
3 56.95 24.07 59.75 40.69 59.57 18.53 53.84 12.80 55.02 13.11 58.77 10.96
4 56.20 24.78 59.20 39.17 58.96 18.63 53.27 13.54 54.39 13.17 57.99 10.90
5 56.37 22.76 59.59 38.44 59.20 18.25 53.42 13.75 54.66 13.08 57.98 10.60
6 58.73 22.97 62.18 38.84 61.42 18.03 55.47 13.10 55.74 11.78 58.15 11.36
7 66.52 20.07 70.69 31.78 68.37 18.62 60.15 15.17 59.85 13.81 62.41 11.75
8 78.29 21.27 81.91 31.57 78.83 20.18 68.81 16.83 69.83 15.94 71.50 11.92
9 86.72 26.98 91.77 34.60 89.52 18.74 78.39 18.78 79.09 17.90 81.53 14.24
10 90.83 26.59 95.91 35.03 92.64 18.98 81.41 20.02 82.18 19.09 85.71 16.12
11 91.64 27.02 96.26 35.72 92.43 20.81 81.59 20.96 82.64 18.16 87.05 19.00
12 91.31 27.50 95.81 36.05 91.57 21.63 80.76 19.93 82.44 16.74 87.43 19.57
13 87.12 27.77 90.80 36.11 86.75 23.77 77.02 21.18 78.47 17.76 84.19 19.47
14 84.96 27.94 88.76 36.98 84.77 24.71 74.93 22.64 76.79 16.80 82.72 18.77
15 86.46 26.90 90.38 30.99 86.31 22.33 75.95 20.47 77.94 15.46 83.63 17.83
16 87.64 25.30 91.37 27.02 86.78 19.13 76.26 18.12 78.04 13.64 83.83 15.15
17 90.12 24.37 92.94 24.68 87.76 18.62 76.18 16.10 77.49 11.91 83.77 13.55
18 96.38 20.17 96.21 23.22 89.08 18.36 75.27 14.32 76.35 11.46 82.34 12.76
19 97.49 22.84 100.98 31.42 93.83 18.58 75.65 16.13 75.63 15.01 81.02 13.76
20 96.05 23.54 100.47 29.36 97.49 20.58 78.62 15.44 76.53 17.06 80.78 13.09
21 90.53 23.68 94.78 31.65 92.62 20.57 81.86 15.79 77.82 13.58 79.11 10.32
22 84.93 22.39 88.73 26.82 86.98 19.37 78.29 14.19 77.58 11.73 80.06 9.80
23 77.60 23.20 80.58 33.32 78.69 20.98 71.55 14.93 71.21 13.10 75.33 9.42

24 69.81 19.76 72.81 32.51 75.62 19.85 64.47 14.67 64.20 12.95 69.49 11.51

Elastic-Inelastic Bid. Hourly Average Quantity Bid. Jan-Jun 2012
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Hour Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic Inelastic Elastic

1 69.57 13.20 62.76 12.53 61.34 13.22 58.18 14.84 55.13 19.68 55.08 30.22
2 66.57 11.65 59.63 10.76 58.54 11.57 55.40 17.15 52.48 23.22 51.77 30.50
3 64.51 9.11 57.53 9.33 56.82 11.42 53.64 20.06 50.78 23.35 49.61 30.25
4 63.41 8.18 56.21 8.37 55.86 11.82 52.92 20.81 50.14 24.66 48.79 29.37
5 63.22 7.97 55.75 8.31 56.05 11.73 53.10 21.07 50.51 23.02 48.90 29.39
6 63.69 8.44 56.78 7.91 57.81 10.84 55.16 19.16 52.66 22.43 51.11 29.09
7 67.01 9.32 58.07 8.64 63.17 10.28 62.08 18.54 59.03 16.47 57.60 21.33
8 75.58 13.65 63.34 12.78 69.59 13.91 70.73 23.82 66.82 19.51 65.98 20.57
9 85.89 15.62 71.66 13.60 78.39 13.44 77.62 26.00 73.96 18.26 73.29 20.32
10 90.87 16.95 75.75 14.61 82.25 14.76 79.89 26.20 76.26 18.01 76.48 19.52
11 92.35 19.04 77.12 15.74 82.72 14.82 79.78 26.24 76.28 18.78 76.72 22.10
12 93.18 19.88 77.96 17.21 82.70 17.32 79.46 26.71 75.84 20.04 76.32 24.11
13 90.43 18.51 77.04 18.26 79.34 19.94 75.96 25.55 72.48 25.83 73.08 31.20
14 89.43 19.12 76.33 18.53 78.00 21.27 74.43 28.24 71.23 24.20 71.12 29.15
15 90.48 19.56 76.62 19.03 79.07 20.35 75.60 22.00 72.63 17.83 72.11 22.76
16 90.85 19.97 76.82 17.93 79.65 19.30 76.38 20.81 74.14 16.74 73.49 17.98
17 90.95 19.94 77.70 15.74 80.38 16.47 76.76 21.62 77.18 12.86 77.34 16.46
18 90.18 17.19 78.05 13.91 80.13 13.44 77.25 20.48 83.48 9.61 83.98 15.45
19 88.73 15.91 78.63 10.51 80.00 13.36 80.79 18.04 83.87 16.86 83.85 19.26
20 87.61 16.35 79.10 7.59 84.06 11.13 86.07 18.01 82.03 14.24 82.62 17.79
21 85.52 12.15 80.30 6.17 83.16 11.40 81.08 20.45 76.74 14.90 77.70 16.22
22 85.90 11.09 78.36 6.13 77.92 11.29 75.40 17.52 71.34 14.90 72.72 16.99
23 81.11 12.88 72.64 8.74 71.54 12.04 68.56 20.40 65.23 16.13 66.44 16.54

24 75.25 14.58 67.52 11.63 65.53 13.70 62.30 21.84 59.33 15.25 60.18 20.14

November DecemberJuly August September October

Elastic Inelastic Bid. Hourly Average Quantity Bid. Jul-Dec 2012.

Italian Single Buyer is one of the most preminent economic agent operating
in the wholesale electricity market. This company was created by GSE with
the task of guaranteeing the availability of electricity in order to cover the
demand of captive customers. Agents submitting bids are not infact nec-
essary final users. Single Buyer operates by purchasing the required power
capacity, by reselling it to distributors on non discriminatory terms and by
making possible the application of a single national tarif to customers.
Its institutional role imposes to derive and discuss the main summary sta-

tistics. In particular, it was derived the measure referring the hourly average
demand share that proxies the portion of electricity demand satisfying cap-
tive and domestic consumers. Moreover, it was computed the hourly average
relative frequency in order to represent the behaviour variability. Tables en-
lighten how Single Buyer represents a consistent portion of hourly demand,
since its average bids oscillate between the 10% and the 20%. On the other
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hand, relative frequency is very small, around the 0.5% on average. Tables
confirm the role of Single Buyer as an intermediary between power genera-
tors and distributors: with a restricted number of bids, Single Buyer covers
a big portion of demand related to the captive consumers. Moreover, quan-
tity shares vary considerably across hours, suggesting that captive consumers
have a flexible behaviour and they change their consumption profile during
the day. The institutional role of Single Buyer as intermediary between the
market and captive consumers may suggest the possibility of moral hazard.
In the next chapter it will be shown how this issue has been faced in the
model.

January February March April May June
1 0.45% 0.45% 0.35% 0.41% 0.42% 0.46%
2 0.35% 0.28% 0.22% 0.23% 0.23% 0.28%
3 0.26% 0.22% 0.22% 0.23% 0.23% 0.23%
4 0.23% 0.22% 0.22% 0.23% 0.23% 0.23%
5 0.22% 0.22% 0.22% 0.23% 0.23% 0.23%
6 0.22% 0.22% 0.23% 0.23% 0.23% 0.23%
7 0.43% 0.42% 0.29% 0.30% 0.31% 0.32%
8 0.47% 0.48% 0.45% 0.45% 0.46% 0.46%
9 0.63% 0.68% 0.47% 0.48% 0.48% 0.47%

10 0.67% 0.70% 0.51% 0.54% 0.53% 0.51%
11 0.68% 0.70% 0.50% 0.52% 0.52% 0.52%
12 0.68% 0.69% 0.50% 0.50% 0.48% 0.54%
13 0.67% 0.68% 0.50% 0.49% 0.48% 0.54%
14 0.61% 0.60% 0.46% 0.48% 0.48% 0.48%
15 0.63% 0.61% 0.47% 0.48% 0.48% 0.47%
16 0.66% 0.64% 0.47% 0.48% 0.48% 0.47%
17 0.67% 0.68% 0.47% 0.48% 0.48% 0.48%
18 0.69% 0.70% 0.56% 0.48% 0.48% 0.51%
19 0.73% 0.73% 0.67% 0.49% 0.48% 0.51%
20 0.75% 0.79% 0.69% 0.63% 0.52% 0.58%
21 0.77% 0.86% 0.69% 0.71% 0.71% 0.69%
22 0.70% 0.69% 0.69% 0.70% 0.64% 0.70%
23 0.68% 0.68% 0.50% 0.48% 0.47% 0.52%
24 0.45% 0.45% 0.46% 0.47% 0.47% 0.47%

Single Buyer. Hourly Average Relative Frequency. Jan.-Jun. 2011.
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July August September October November December
1 0.45% 0.46% 0.45% 0.24% 0.23% 0.34%
2 0.45% 0.46% 0.26% 0.23% 0.23% 0.24%
3 0.36% 0.44% 0.23% 0.23% 0.23% 0.23%
4 0.29% 0.36% 0.23% 0.23% 0.23% 0.23%
5 0.27% 0.33% 0.23% 0.23% 0.23% 0.23%
6 0.29% 0.33% 0.23% 0.23% 0.22% 0.23%
7 0.42% 0.46% 0.28% 0.23% 0.23% 0.23%
8 0.46% 0.47% 0.44% 0.41% 0.43% 0.43%
9 0.46% 0.47% 0.46% 0.41% 0.45% 0.46%

10 0.48% 0.52% 0.46% 0.46% 0.46% 0.47%
11 0.54% 0.54% 0.46% 0.46% 0.46% 0.48%
12 0.55% 0.57% 0.46% 0.46% 0.46% 0.47%
13 0.56% 0.58% 0.47% 0.46% 0.46% 0.48%
14 0.50% 0.54% 0.47% 0.38% 0.46% 0.46%
15 0.50% 0.53% 0.47% 0.36% 0.46% 0.46%
16 0.50% 0.51% 0.46% 0.38% 0.46% 0.46%
17 0.51% 0.55% 0.46% 0.46% 0.46% 0.50%
18 0.56% 0.57% 0.46% 0.46% 0.46% 0.61%
19 0.58% 0.57% 0.50% 0.46% 0.49% 0.62%
20 0.66% 0.70% 0.68% 0.47% 0.54% 0.66%
21 0.69% 0.83% 0.69% 0.48% 0.58% 0.67%
22 0.69% 0.70% 0.66% 0.46% 0.46% 0.63%
23 0.63% 0.70% 0.48% 0.46% 0.46% 0.49%
24 0.49% 0.56% 0.46% 0.31% 0.45% 0.47%

Single Buyer. Hourly Average Relative Frequency. Jul.-Dec. 2011.
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January February March April May June
1 15.13% 13.27% 11.69% 11.21% 11.25% 11.25%
2 12.23% 10.18% 8.40% 8.02% 8.27% 8.86%
3 10.19% 8.25% 6.68% 6.49% 6.87% 7.35%
4 9.19% 7.53% 6.00% 5.83% 6.25% 6.73%
5 8.90% 7.52% 6.01% 5.74% 6.20% 6.57%
6 9.94% 8.69% 7.07% 6.55% 7.00% 7.59%
7 13.52% 12.23% 11.00% 9.60% 9.57% 9.01%
8 17.95% 17.76% 16.15% 14.57% 13.62% 12.27%
9 20.51% 19.59% 16.88% 14.93% 13.89% 13.16%

10 21.82% 20.72% 18.21% 16.46% 15.39% 14.91%
11 22.10% 20.89% 18.30% 16.59% 15.56% 15.37%
12 22.39% 21.00% 18.37% 16.60% 15.62% 15.68%
13 22.25% 20.76% 18.11% 16.41% 15.42% 15.73%
14 21.08% 19.47% 16.86% 15.07% 14.30% 14.66%
15 21.23% 19.71% 16.98% 15.00% 14.30% 14.40%
16 21.68% 20.04% 17.21% 15.04% 14.41% 14.46%
17 23.16% 20.89% 17.89% 15.41% 14.79% 14.95%
18 25.25% 23.15% 19.80% 16.07% 15.37% 15.54%
19 26.36% 25.04% 22.39% 17.00% 16.08% 16.13%
20 27.33% 26.37% 23.77% 20.98% 18.78% 18.41%
21 27.34% 26.08% 24.14% 22.53% 21.29% 19.78%
22 26.06% 24.63% 22.85% 21.44% 20.56% 20.12%
23 23.42% 21.86% 20.05% 19.09% 18.37% 17.97%
24 19.21% 17.46% 15.57% 15.03% 14.75% 14.79%

Single Buyer. Hourly Average Quantity Bid compared to the total amount
of Bid accepted. Jan.-Jun. 2011.
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July August September October November December
1 14.00% 15.06% 10.21% 7.76% 8.17% 11.88%
2 11.54% 12.58% 7.96% 4.79% 5.12% 8.28%
3 10.35% 10.99% 6.59% 3.24% 3.56% 6.14%
4 9.45% 10.34% 6.01% 2.63% 2.90% 5.26%
5 8.99% 9.93% 5.90% 2.57% 2.92% 5.18%
6 9.32% 9.99% 6.43% 3.45% 4.11% 6.32%
7 10.45% 10.94% 7.98% 6.58% 7.47% 9.59%
8 12.68% 13.45% 12.02% 12.16% 13.76% 14.67%
9 13.46% 13.91% 11.76% 12.04% 12.99% 15.27%

10 15.34% 15.98% 13.19% 12.95% 14.08% 17.08%
11 16.12% 16.64% 13.54% 13.09% 14.25% 17.50%
12 16.56% 17.10% 13.77% 13.18% 14.42% 17.62%
13 16.88% 17.50% 13.79% 12.94% 14.31% 17.55%
14 16.01% 16.66% 12.66% 11.95% 13.14% 16.27%
15 15.84% 16.28% 12.50% 11.87% 13.37% 16.34%
16 15.88% 16.15% 12.63% 12.10% 13.86% 16.98%
17 16.50% 16.78% 13.22% 12.54% 15.41% 18.99%
18 17.28% 17.60% 14.02% 13.58% 17.52% 20.95%
19 17.86% 18.35% 15.11% 15.84% 18.69% 21.79%
20 19.88% 20.86% 19.05% 19.20% 21.01% 23.78%
21 21.23% 23.59% 19.68% 19.81% 21.17% 24.03%
22 21.45% 22.32% 18.76% 18.40% 19.60% 23.11%
23 19.90% 20.66% 16.71% 15.86% 16.88% 20.53%
24 17.17% 18.33% 13.34% 11.96% 12.57% 16.24%

Single Buyer. Hourly Average Quantity Bid compared to the total amount
of Bid Accepted. Jul.-Dec. 2011.
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January February March April May June
1 0.44% 0.38% 0.43% 0.40% 0.43% 0.40%
2 0.29% 0.21% 0.26% 0.29% 0.26% 0.32%
3 0.24% 0.19% 0.22% 0.22% 0.22% 0.25%
4 0.23% 0.19% 0.22% 0.22% 0.22% 0.21%
5 0.22% 0.19% 0.22% 0.22% 0.22% 0.21%
6 0.22% 0.19% 0.22% 0.22% 0.22% 0.22%
7 0.41% 0.36% 0.38% 0.35% 0.38% 0.27%
8 0.44% 0.39% 0.45% 0.44% 0.45% 0.41%
9 0.45% 0.42% 0.49% 0.40% 0.49% 0.31%

10 0.49% 0.44% 0.51% 0.48% 0.51% 0.39%
11 0.52% 0.45% 0.50% 0.49% 0.50% 0.39%
12 0.52% 0.46% 0.50% 0.46% 0.50% 0.39%
13 0.53% 0.46% 0.49% 0.47% 0.49% 0.39%
14 0.49% 0.44% 0.47% 0.39% 0.47% 0.34%
15 0.49% 0.44% 0.48% 0.39% 0.48% 0.34%
16 0.51% 0.44% 0.48% 0.40% 0.48% 0.36%
17 0.52% 0.44% 0.48% 0.41% 0.48% 0.40%
18 0.63% 0.55% 0.50% 0.45% 0.50% 0.42%
19 0.67% 0.61% 0.56% 0.49% 0.56% 0.43%
20 0.68% 0.61% 0.69% 0.50% 0.69% 0.46%
21 0.76% 0.75% 0.73% 0.67% 0.73% 0.60%
22 0.71% 0.59% 0.69% 0.67% 0.69% 0.61%
23 0.66% 0.58% 0.64% 0.58% 0.64% 0.47%
24 0.45% 0.39% 0.46% 0.44% 0.46% 0.43%

Single Buyer. Hourly Average Relative Frequency. Jan.-Jun. 2012
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July August September October NovemberDecember
1 0.41% 0.42% 0.38% 0.20% 0.20% 0.21%
2 0.31% 0.42% 0.24% 0.20% 0.20% 0.20%
3 0.21% 0.42% 0.21% 0.20% 0.20% 0.19%
4 0.21% 0.37% 0.21% 0.20% 0.20% 0.19%
5 0.21% 0.34% 0.21% 0.20% 0.20% 0.19%
6 0.21% 0.35% 0.21% 0.20% 0.20% 0.19%
7 0.22% 0.41% 0.22% 0.20% 0.20% 0.20%
8 0.38% 0.42% 0.41% 0.36% 0.36% 0.35%
9 0.27% 0.41% 0.33% 0.27% 0.27% 0.33%

10 0.40% 0.42% 0.42% 0.31% 0.31% 0.37%
11 0.40% 0.43% 0.43% 0.30% 0.30% 0.37%
12 0.40% 0.42% 0.42% 0.29% 0.29% 0.37%
13 0.40% 0.44% 0.42% 0.29% 0.29% 0.37%
14 0.39% 0.42% 0.34% 0.28% 0.28% 0.33%
15 0.39% 0.42% 0.34% 0.28% 0.28% 0.34%
16 0.40% 0.42% 0.38% 0.30% 0.30% 0.37%
17 0.40% 0.43% 0.42% 0.40% 0.40% 0.41%
18 0.42% 0.46% 0.43% 0.41% 0.41% 0.43%
19 0.42% 0.46% 0.45% 0.42% 0.42% 0.43%
20 0.43% 0.53% 0.49% 0.42% 0.42% 0.43%
21 0.60% 0.78% 0.62% 0.44% 0.44% 0.50%
22 0.58% 0.63% 0.55% 0.41% 0.41% 0.44%
23 0.48% 0.64% 0.44% 0.41% 0.41% 0.41%
24 0.42% 0.54% 0.42% 0.31% 0.31% 0.40%

Single Buyer. Hourly Average Relative Frequency. Jul.-Dec. 2012.
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January February March April May June
1 13.63% 11.03% 11.43% 11.96% 10.20% 12.07%
2 10.68% 8.28% 8.41% 8.97% 6.95% 9.48%
3 8.64% 6.70% 6.58% 7.08% 5.45% 7.82%
4 7.64% 6.08% 5.86% 6.37% 4.78% 6.84%
5 7.35% 6.04% 5.80% 6.26% 4.69% 6.59%
6 8.40% 6.98% 6.64% 6.96% 5.49% 7.45%
7 12.07% 10.14% 10.19% 9.76% 7.75% 8.51%
8 16.61% 14.86% 14.80% 13.32% 11.67% 11.10%
9 16.15% 14.61% 13.71% 12.25% 9.94% 9.70%

10 17.98% 16.04% 15.04% 13.43% 11.07% 11.04%
11 18.48% 16.34% 15.06% 13.46% 11.14% 11.38%
12 18.74% 16.53% 15.08% 13.24% 11.06% 11.59%
13 18.74% 16.58% 14.97% 13.07% 10.86% 11.73%
14 17.38% 15.50% 13.68% 11.92% 9.59% 11.05%
15 17.38% 15.45% 13.68% 11.71% 9.52% 10.89%
16 17.87% 15.78% 14.06% 11.85% 9.75% 10.99%
17 19.39% 16.84% 14.94% 12.39% 10.51% 11.82%
18 21.67% 18.98% 16.81% 13.39% 11.66% 12.99%
19 22.80% 20.59% 19.15% 15.08% 13.10% 13.94%
20 24.84% 22.67% 22.06% 19.08% 16.02% 16.67%
21 26.03% 23.55% 23.88% 22.87% 20.98% 20.05%
22 24.94% 22.23% 22.67% 21.83% 20.19% 20.46%
23 22.50% 19.82% 20.42% 19.90% 17.92% 18.80%
24 18.00% 15.29% 15.57% 15.79% 14.09% 15.67%

Single Buyer. Hourly Average Quantity Bid compared to the total amount
of Bid accepted. Jan.-Jun. 2012.
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July August September October NovemberDecember
1 12.15% 15.58% 10.41% 7.61% 7.17% 9.37%
2 9.70% 13.18% 7.92% 4.78% 4.15% 5.85%
3 7.86% 11.55% 6.40% 3.33% 2.58% 3.83%
4 6.99% 10.85% 5.74% 2.74% 1.93% 2.91%
5 6.57% 10.38% 5.54% 2.67% 1.93% 2.77%
6 6.69% 10.28% 6.07% 3.59% 3.15% 3.90%
7 7.61% 10.93% 7.68% 6.69% 6.28% 7.31%
8 10.02% 12.70% 11.59% 11.71% 12.35% 12.34%
9 9.12% 11.20% 10.04% 9.91% 10.66% 11.94%

10 10.54% 12.42% 10.89% 10.58% 11.50% 13.41%
11 11.05% 12.61% 11.03% 10.36% 11.36% 13.50%
12 11.37% 12.70% 11.05% 10.19% 11.37% 13.46%
13 11.63% 13.15% 11.03% 9.88% 11.23% 13.28%
14 11.06% 12.70% 10.04% 8.60% 10.11% 12.40%
15 11.03% 12.66% 9.88% 8.59% 10.46% 12.78%
16 11.24% 12.85% 10.08% 9.02% 11.33% 13.74%
17 12.15% 13.84% 11.07% 10.19% 13.42% 15.89%
18 13.08% 15.17% 12.49% 11.73% 15.89% 18.19%
19 14.04% 16.42% 14.14% 14.42% 17.02% 19.23%
20 16.38% 19.61% 18.34% 18.43% 19.47% 21.35%
21 19.49% 23.61% 20.05% 19.70% 20.55% 22.50%
22 20.04% 22.51% 19.07% 18.46% 19.18% 21.20%
23 18.35% 21.18% 16.89% 15.82% 16.15% 18.64%
24 15.52% 18.99% 13.36% 11.89% 11.80% 14.51%

Single Buyer. Hourly Average Quantity Bid compared to the total amount
of Bid accepted. Jul.-Dec. 2012.

Bilateral Contracts are another feature of the Day-Ahead Market to be
deeply examined. They are contracts of supply of electricity made off the
Power Exchange between Wholesalers and Eligible Customers. The price, as
well as the withdrawal profiles, are freely agreed by the parties. However,
transaction and related withdrawal schedule have to be recorded in order
to check their consistency with the transmission constraints on the National
Trasmission Grid. These contracts may be ascribed to the demand of eco-
nomic agents using electricity for industrial production purposes and they
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account on average for 50% of the total bid accepted. Their shares had been
increasing in the two years analized. During the first semester of 2011 the
share was on average about the 46%, reaching the 50% between July and
December. In 2012, the growth was slower; the average quantity submitted
in the first semester was about 48% of the total amount of Bid accepted,
reaching the 50.8% in the second Semester.

Hour January February March April May June
1 50.79% 49.89% 51.56% 53.67% 54.99% 53.09%
2 50.28% 49.67% 51.29% 53.55% 54.84% 53.10%
3 50.07% 49.44% 50.94% 53.69% 54.82% 52.93%
4 49.98% 49.14% 50.75% 53.70% 54.79% 53.02%
5 49.83% 49.18% 50.86% 53.63% 54.60% 53.10%
6 50.19% 49.86% 51.34% 53.40% 54.42% 52.95%
7 50.05% 49.77% 51.79% 54.29% 54.92% 53.05%
8 50.25% 50.11% 51.59% 53.99% 54.26% 52.76%
9 50.76% 50.82% 52.75% 54.75% 55.76% 53.71%

10 50.62% 50.46% 52.35% 54.68% 55.82% 53.80%
11 50.49% 50.45% 52.39% 54.39% 55.63% 53.74%
12 50.45% 50.49% 52.39% 54.45% 55.58% 53.66%
13 50.49% 50.81% 52.45% 54.59% 54.83% 53.42%
14 50.60% 50.70% 52.45% 54.79% 55.11% 53.56%
15 50.89% 51.06% 52.57% 54.87% 55.47% 53.58%
16 50.78% 50.68% 52.42% 54.89% 55.53% 53.59%
17 50.63% 51.05% 52.62% 54.99% 55.52% 53.57%
18 51.11% 51.54% 53.09% 55.17% 55.65% 53.74%
19 51.19% 51.77% 53.12% 55.82% 55.69% 54.29%
20 51.30% 51.77% 52.97% 55.61% 55.69% 54.31%
21 50.48% 50.16% 51.44% 53.62% 54.39% 52.74%
22 50.79% 50.42% 51.52% 54.11% 54.38% 52.98%
23 50.91% 50.27% 51.78% 54.85% 54.98% 53.47%
24 50.64% 49.98% 51.72% 54.78% 55.33% 53.41%

Bilateral Contracts. Hourly Average Relative Frequency. Jan.-Jun. 2011.
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Hour July August September October NovemberDecember
1 52.32% 51.20% 50.35% 52.73% 53.39% 51.94%
2 52.32% 51.38% 50.75% 52.77% 53.03% 51.86%
3 52.63% 51.55% 50.96% 52.42% 52.74% 51.76%
4 52.87% 51.74% 51.18% 52.38% 52.71% 51.63%
5 52.79% 51.61% 51.13% 52.31% 52.64% 51.43%
6 52.44% 51.11% 50.29% 52.22% 52.50% 51.38%
7 52.59% 50.81% 49.46% 52.02% 52.61% 51.51%
8 52.38% 50.67% 49.67% 52.24% 52.20% 51.22%
9 52.76% 51.63% 50.39% 53.17% 52.98% 51.99%

10 53.10% 51.77% 50.93% 53.08% 52.74% 51.75%
11 53.13% 51.94% 50.92% 53.18% 52.95% 51.55%
12 53.14% 51.78% 50.91% 53.13% 52.84% 51.55%
13 52.69% 51.70% 50.86% 53.64% 53.54% 52.16%
14 52.40% 51.83% 50.77% 53.82% 53.67% 52.20%
15 52.50% 51.86% 50.71% 53.66% 53.23% 52.16%
16 52.52% 51.85% 50.59% 53.59% 53.20% 52.02%
17 52.41% 51.62% 50.48% 53.44% 52.89% 51.98%
18 52.62% 51.62% 50.85% 53.60% 53.14% 52.23%
19 52.77% 51.75% 51.14% 53.48% 53.15% 52.09%
20 53.51% 52.07% 51.25% 53.56% 52.72% 51.81%
21 52.28% 50.68% 50.88% 52.70% 51.82% 50.71%
22 52.58% 51.31% 51.02% 52.81% 52.43% 51.53%
23 53.12% 51.84% 51.28% 53.24% 53.51% 52.78%
24 53.13% 51.75% 50.90% 52.79% 53.47% 52.60%

Bilateral Contracts. Hourly Average relative Frequency. Jul.-Dec. 2011.
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Hour January February March April May June
1 45.96% 49.52% 52.53% 50.73% 49.63% 48.26%
2 47.69% 51.85% 54.69% 52.93% 51.83% 50.33%
3 48.54% 52.73% 55.66% 54.15% 53.19% 51.40%
4 49.01% 52.90% 55.93% 54.75% 53.66% 51.96%
5 48.76% 52.72% 55.67% 54.43% 53.51% 51.81%
6 47.69% 51.57% 54.77% 52.93% 52.57% 51.60%
7 43.56% 46.66% 50.50% 49.65% 49.68% 49.08%
8 38.99% 41.73% 44.82% 44.62% 43.97% 44.52%
9 42.06% 45.22% 49.33% 46.76% 46.40% 45.91%

10 40.32% 43.66% 48.09% 45.42% 45.06% 44.44%
11 40.01% 43.56% 48.07% 45.33% 44.82% 44.02%
12 40.08% 43.78% 48.34% 45.53% 44.89% 43.93%
13 41.31% 45.37% 49.96% 47.08% 45.95% 44.91%
14 42.14% 46.22% 50.74% 48.03% 46.69% 45.46%
15 41.73% 45.73% 50.15% 47.57% 46.35% 45.20%
16 41.46% 45.54% 49.98% 47.62% 46.27% 45.14%
17 40.62% 45.22% 49.79% 47.75% 46.30% 44.90%
18 39.01% 44.21% 49.75% 48.47% 46.83% 45.26%
19 38.67% 42.32% 47.78% 48.69% 47.27% 45.85%
20 38.84% 42.35% 46.36% 46.60% 46.58% 45.48%
21 34.49% 37.68% 39.89% 39.43% 40.50% 40.83%
22 36.33% 39.71% 41.96% 40.84% 40.55% 40.47%
23 39.05% 42.18% 44.75% 43.42% 42.74% 42.22%
24 42.29% 45.90% 48.58% 47.15% 46.25% 45.02%

Bilateral Contracts. Hourly Average Quantity Bid compared to the total
amount f Bid Accepted. Jan-Jun. 2011.
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Hour July August September October NovemberDecember
1 49.20% 52.76% 51.90% 58.40% 59.46% 57.51%
2 51.26% 55.06% 53.99% 60.27% 61.14% 59.55%
3 52.61% 56.40% 55.13% 61.42% 62.23% 60.68%
4 53.32% 57.31% 55.68% 61.72% 62.69% 61.25%
5 53.42% 57.54% 55.64% 61.64% 62.46% 61.15%
6 53.00% 56.85% 54.35% 60.31% 60.73% 59.86%
7 51.38% 55.60% 50.56% 56.04% 55.95% 55.59%
8 47.25% 51.29% 47.11% 50.28% 49.56% 49.61%
9 48.53% 52.39% 48.25% 49.89% 47.96% 47.75%

10 46.77% 50.37% 46.89% 48.83% 46.83% 46.21%
11 46.19% 49.70% 46.47% 48.82% 46.73% 46.08%
12 45.94% 49.34% 46.40% 48.93% 46.81% 46.24%
13 46.74% 49.65% 47.79% 50.67% 48.61% 47.71%
14 46.95% 50.11% 48.41% 51.41% 49.29% 48.59%
15 46.65% 50.08% 47.91% 50.88% 48.54% 48.07%
16 46.61% 50.12% 47.72% 50.67% 47.97% 47.41%
17 46.31% 49.79% 47.43% 50.35% 46.36% 45.58%
18 46.68% 49.74% 47.88% 50.30% 44.28% 43.77%
19 47.28% 49.76% 48.21% 48.58% 44.26% 43.83%
20 47.09% 49.03% 45.96% 46.06% 44.28% 43.80%
21 42.63% 43.27% 42.08% 45.48% 44.73% 43.90%
22 42.31% 44.14% 44.04% 47.78% 47.30% 46.16%
23 44.24% 46.79% 46.60% 51.22% 51.19% 49.64%
24 46.46% 49.71% 49.04% 55.06% 55.53% 53.72%

Bilateral Conrtacts. Hourly Average Quantity Bid compared to the total
amount of Bid accepted. Jul.-Dec. 2011.
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January February March April May June
1 45.34% 40.70% 46.88% 47.49% 48.54% 49.57%
2 45.00% 40.65% 46.42% 47.15% 48.24% 49.68%
3 45.22% 40.80% 46.51% 47.21% 48.16% 49.44%
4 45.35% 40.92% 46.62% 47.27% 48.13% 49.53%
5 45.31% 40.90% 46.59% 47.26% 48.09% 49.53%
6 45.17% 40.50% 46.54% 47.18% 47.96% 49.75%
7 44.69% 40.55% 46.59% 47.29% 47.99% 49.31%
8 44.77% 40.34% 46.73% 47.34% 47.88% 49.07%
9 46.33% 40.97% 47.70% 48.50% 48.66% 49.65%

10 46.00% 40.86% 47.56% 48.36% 48.37% 49.10%
11 46.16% 40.88% 47.34% 47.92% 48.18% 48.76%
12 46.24% 41.14% 47.24% 47.53% 47.86% 48.47%
13 46.01% 41.43% 47.18% 47.28% 47.68% 48.42%
14 46.23% 41.66% 47.33% 47.31% 47.62% 48.49%
15 46.51% 41.57% 47.57% 47.49% 47.87% 48.68%
16 46.53% 41.68% 47.95% 47.92% 48.26% 48.94%
17 46.39% 41.55% 48.07% 48.33% 48.70% 49.35%
18 46.72% 41.54% 48.41% 48.45% 49.16% 49.85%
19 47.21% 41.59% 49.19% 49.42% 50.31% 50.28%
20 47.61% 42.61% 49.46% 50.41% 50.88% 51.46%
21 45.21% 40.85% 46.87% 48.64% 48.52% 48.97%
22 45.24% 41.10% 46.90% 48.47% 48.74% 48.83%
23 45.56% 41.22% 47.20% 48.42% 48.93% 49.65%
24 45.84% 41.77% 47.57% 48.20% 48.89% 50.24%

Bilateral Contracts. Hourly Average Relative Frequency. Jan.-Jun. 2012
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July August September October NovemberDecember
1 50.29% 50.44% 50.81% 52.48% 50.07% 48.42%
2 50.61% 50.46% 51.02% 52.21% 49.60% 48.03%
3 50.69% 50.40% 50.93% 51.91% 49.37% 47.42%
4 50.74% 50.55% 50.66% 51.57% 49.01% 47.05%
5 50.80% 50.53% 50.80% 51.53% 49.01% 46.79%
6 50.79% 50.30% 50.49% 50.94% 49.12% 46.74%
7 49.77% 49.67% 50.09% 50.93% 48.68% 47.09%
8 49.22% 49.64% 50.15% 50.79% 49.52% 47.29%
9 50.46% 51.13% 51.87% 52.10% 52.22% 48.43%

10 49.57% 50.60% 51.61% 51.69% 51.87% 48.07%
11 49.25% 50.10% 51.51% 51.45% 51.24% 47.67%
12 48.89% 49.56% 50.82% 51.06% 50.83% 47.24%
13 48.39% 49.30% 50.55% 51.69% 51.12% 47.42%
14 48.27% 49.27% 49.99% 51.29% 51.21% 47.61%
15 48.30% 49.22% 49.92% 50.97% 51.24% 47.89%
16 48.57% 49.38% 50.11% 51.08% 51.57% 48.30%
17 49.49% 49.83% 50.81% 51.42% 51.70% 48.44%
18 50.46% 50.33% 51.28% 51.86% 51.92% 48.61%
19 51.15% 51.15% 51.93% 51.82% 52.70% 49.34%
20 52.47% 51.86% 52.41% 52.60% 53.34% 49.46%
21 50.42% 50.03% 50.90% 52.27% 50.02% 47.98%
22 50.51% 50.42% 51.62% 52.77% 50.37% 48.50%
23 50.86% 50.55% 51.90% 52.73% 50.97% 49.48%
24 50.96% 50.94% 51.39% 52.79% 51.24% 49.15%

Bilateral Contracts. Hourly Average Relative Frequency. Jul.-Dec. 2012.



74 CHAPTER 3 ELECTRICITY MARKET

January February March April May June
1 52.90% 46.61% 55.56% 51.18% 53.41% 50.56%
2 54.60% 48.02% 56.91% 52.92% 55.14% 52.77%
3 55.56% 49.00% 57.86% 54.03% 56.22% 54.06%
4 55.97% 49.35% 58.37% 54.35% 56.57% 54.65%
5 55.95% 49.14% 58.18% 54.20% 56.40% 54.62%
6 54.76% 47.81% 56.88% 52.87% 55.65% 54.43%
7 50.23% 44.63% 52.96% 50.08% 52.97% 51.60%
8 44.16% 40.00% 47.10% 45.02% 47.21% 46.13%
9 45.36% 41.20% 49.31% 48.23% 49.95% 48.74%
10 44.02% 40.03% 48.40% 46.80% 48.42% 46.68%
11 44.11% 40.06% 48.43% 46.59% 48.23% 46.11%
12 44.28% 40.33% 48.62% 46.67% 48.05% 45.67%
13 45.87% 42.03% 50.45% 48.25% 49.89% 46.99%
14 46.79% 42.73% 51.13% 49.19% 50.68% 47.58%
15 46.30% 42.21% 50.66% 48.96% 50.39% 47.23%
16 45.95% 42.01% 50.72% 49.04% 50.58% 47.32%
17 44.84% 41.51% 50.48% 49.35% 51.07% 47.64%
18 42.93% 40.70% 50.29% 50.24% 52.04% 48.65%
19 42.73% 39.45% 48.67% 50.54% 52.79% 49.50%
20 42.68% 39.47% 47.10% 48.93% 52.01% 49.74%
21 39.86% 36.94% 42.64% 40.61% 43.84% 43.13%
22 41.95% 38.57% 44.55% 41.81% 44.11% 42.50%
23 45.33% 41.16% 47.98% 44.67% 47.18% 44.73%
24 49.40% 44.72% 52.42% 48.36% 51.12% 47.97%

Bilateral Contracts. Hourly Average Quantity Bid compared to the total
amount of Bis accepted. Jan.-Jun. 2012.
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July August September October NovemberDecember
1 49.87% 47.80% 52.53% 59.94% 59.31% 55.43%
2 51.68% 49.83% 54.57% 61.82% 61.16% 57.81%
3 53.07% 51.23% 55.77% 63.00% 62.44% 59.15%
4 53.85% 52.21% 56.27% 63.25% 62.69% 59.70%
5 54.01% 52.57% 56.14% 63.04% 62.46% 59.56%
6 53.75% 52.02% 54.61% 61.20% 60.69% 57.98%
7 51.18% 51.05% 50.80% 56.06% 56.44% 54.05%
8 46.62% 47.86% 46.82% 50.23% 51.44% 48.96%
9 48.06% 49.58% 48.77% 53.03% 54.54% 50.05%
10 45.74% 47.48% 47.16% 51.91% 53.27% 48.47%
11 45.06% 46.75% 47.04% 51.96% 52.93% 48.20%
12 44.62% 45.99% 46.58% 51.79% 52.72% 48.17%
13 45.49% 46.08% 48.01% 53.67% 54.12% 49.40%
14 45.84% 46.34% 48.43% 54.30% 54.93% 50.64%
15 45.38% 46.14% 47.90% 53.66% 54.46% 50.41%
16 45.35% 46.11% 47.76% 53.30% 53.89% 49.90%
17 45.62% 46.00% 47.81% 53.21% 52.44% 48.32%
18 46.44% 46.14% 48.15% 53.02% 49.93% 46.40%
19 47.39% 46.12% 48.40% 51.29% 49.79% 46.68%
20 47.86% 45.66% 46.46% 48.83% 50.40% 46.62%
21 43.01% 40.14% 41.74% 46.16% 46.88% 43.91%
22 42.83% 41.05% 44.18% 48.96% 49.37% 45.98%
23 44.79% 43.39% 47.23% 52.56% 52.84% 49.35%
24 47.42% 45.95% 50.23% 56.52% 56.86% 53.00%

Bilateral Contracts. Hourly Average Quantity Bid compared to the total
amount of Bid Accepted. Jul.-Dec. 2012.

As already mentioned, the Day-Ahead Market is a zonal market reflecting
the limited interconnection capacity of transmission grid. These constraints
influencing the equilibrilibrium prices both on the supply and the demand
side. On the supply side congestion yields to differencing equilibrium prices.
On the demand side, congestion affects the single national price, since the
price paid by buyers is the weighted average of zonal prices formed on the
supply side. Taking into account the role played by trasmission constraints,
the tables below show the number which the national market was split in
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during 2011 and 2012. During the 2011 National Single Market occurred 15%
of times. Division in the two zones was the most frequent, while division in
four zones was marginal and occurred on average just 2% of times. In the
2012, instead, congestions were more frequent since in just 9% of times Single
Market occured. Also the division in four zones increases in frequency which
reached the 6%. Division in two and three zones remained the more frequent,
the relative frequency of two zone division augmented to 54% of times, while
the three division zones relative frequency decreased to 27%. Moreover, it
must be mentioned that market segmentation in five zones has not been taken
in consideration since it has never occurred in the 2011 and just once in the
2012. The five zones market segmentation has deeply decreased, comparing
these results with the relative frequency recorded in the 2010, where this
kind of division occurred around in 60 hours.

Zone 1 2 3 4
January 18% 52% 28% 2%
February 18% 47% 33% 3%
March 21% 47% 31% 1%
April 16% 47% 36% 1%
May 7% 52% 36% 4%
June 9% 50% 36% 5%
July 6% 41% 46% 6%
August 12% 59% 29% 1%
September 12% 31% 55% 2%
October 18% 48% 32% 2%
November 25% 39% 36% 0%
December 24% 48% 27% 1%

Monthly Frequency Of Division Zone. 2011.
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Zone 1 2 3 4
January 12% 65% 23% 0%
February 0% 5% 37% 48%
March 13% 48% 13% 13%
April 16% 59% 24% 1%
May 16% 67% 17% 0%
June 10% 57% 31% 1%
July 3% 41% 50% 7%
August 3% 54% 40% 2%
September 6% 52% 41% 0%
October 9% 76% 15% 0%
November 11% 65% 23% 1%
December 10% 64% 25% 1%

Monthly Frequency of Zone Division. 2012.

Finally, the investigation of main features of electricity market ends with
a descriptive analysis of PUN, the price paid by buyers. Tables highlight that
in the 2012, during peak hours, the price is more dispersed than that recorded
in the 2011. Moreover, tables relate PUN to the market segmentation. When
congestion occurs, demand equilibrium price tends to increase. Congestions
are infact representative of high level of demand and this is particular evident
in the 2012. On the other hand, in the 2011, the PUN behaviour related to
segmentation reachs higher values when segmentation in three zone occurred.
(both in peak and off-peak hours). Neverthless, the lowest average level of
PUN has been recorded when single market occurred. confirming that the
absence of congestions improves market effi ciency. Furthermore, tables high-
light how investments in trasmission capacity are one of the major concern
of Indipendent System Operator, given the crucial role played by electricity
in national economic activities.
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Percentile mean sd min max

1 44.21 6.40 10.00 51.35

2 55.77 2.31 51.36 59.65

3 62.45 1.52 59.66 64.94

4 66.80 0.98 64.96 68.40

5 69.93 0.85 68.41 71.39

6 73.15 1.06 71.40 74.97

7 76.82 1.15 74.98 78.92

8 81.47 1.51 78.93 84.11

9 87.34 2.10 84.12 91.25

10 104.47 13.92 91.27 164.80

Summary Statistics of PUN by its daily Percentile. 2011.

Percentile mean sd min max

1 60.69 4.61 31.00 65.69

2 67.34 0.90 65.70 68.90

3 70.22 0.72 68.92 71.46

4 72.84 0.81 71.48 74.21

5 75.56 0.77 74.22 76.82

6 78.57 1.03 76.83 80.46

7 82.25 1.11 80.47 84.14

8 86.34 1.37 84.15 88.85

9 92.25 2.34 88.87 96.89

10 111.51 15.08 96.92 164.80

Summary Statistics of Peak Hour PUN by its Peak Hour Percentile. 2011.
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Percentile mean sd min max

1 39.66 6.11 10.00 46.09

2 48.94 1.57 46.12 51.86

3 54.29 1.30 51.87 56.37

4 58.64 1.30 56.38 60.76

5 62.73 1.07 60.80 64.47

6 66.30 1.04 64.48 68.00

7 69.61 0.97 68.01 71.29

8 73.74 1.52 71.30 76.48

9 79.91 2.16 76.48 84.07

10 93.42 9.98 84.08 137.84

Figure 3.1: Summary Statistics of Off-Peak Hour PUN by its Off-Peak Hour
Percentile. 2011.

Percentile mean sd min max

1 39.15 6.27 12.14 47.77

2 53.87 3.46 47.80 59.15

3 63.11 2.02 59.17 66.26

4 68.60 1.32 66.27 70.76

5 72.59 1.07 70.77 74.52

6 76.78 1.27 74.53 79.03

7 81.29 1.30 79.04 83.73

8 86.54 1.68 83.74 89.81

9 94.15 2.78 89.85 99.58

10 118.78 21.68 99.61 324.20

Summary Statistics of PUN by its daily Percentile. 2012.
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Percentile mean sd min max

1 45.88 9.54 12.14 58.14

2 63.22 2.29 58.15 66.75

3 69.10 1.33 66.77 71.29

4 73.20 1.16 71.30 75.37

5 77.26 1.10 75.38 79.24

6 81.02 1.00 79.25 82.82

7 85.12 1.27 82.84 87.32

8 90.04 1.66 87.34 93.11

9 97.70 2.88 93.12 103.58

10 126.33 23.17 103.66 222.25

Figure 3.2: Summary Statistics of Peak Hour PUN by its Peak Hour Per-
centile. 2012.

Percentile mean sd min max

1 36.67 5.17 14.88 42.75

2 47.43 2.53 42.77 51.69

3 56.18 2.37 51.70 59.93

4 63.00 1.90 59.94 65.96

5 68.15 1.32 65.97 70.25

6 72.02 1.05 70.27 73.92

7 76.20 1.46 73.93 78.71

8 81.78 1.79 78.72 85.01

9 89.56 2.94 85.02 95.20

10 109.99 17.83 95.21 324.20

Summary Statistics of Off-Peak Hour PUN by its Off-Peak Hour Percentile.
2012.
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Month mean sd min max

January 73.09 6.69 54.00 91.72

February 75.50 10.39 55.79 110.40

March 77.29 11.54 53.65 142.96

April 70.91 11.62 47.83 118.07

May 76.50 8.50 47.45 98.01

June 73.65 8.51 44.40 102.83

July 76.02 13.68 31.00 142.67

August 77.52 12.20 47.00 123.58

September 88.63 12.41 57.59 123.54

October 85.73 14.32 50.22 151.09

November 90.12 20.63 45.90 160.62

December 91.77 17.81 59.21 164.80

January 91.05 19.53 50.31 165.76

February 104.71 34.55 44.31 222.25

March 82.70 25.49 34.94 176.37

April 73.42 20.59 12.14 138.56

May 70.90 16.56 20.52 140.02

June 80.16 17.56 31.61 130.66
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Monthly Average PUN. Peak Hour. 2011-2012.
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Month mean sd min max

January 56.92 13.30 10.00 84.07

February 57.07 11.54 27.00 90.37

March 59.06 11.60 36.18 115.13

April 59.45 12.63 22.94 105.33

May 66.05 11.34 39.98 97.43

June 63.18 11.17 37.49 100.24

July 63.45 14.59 16.14 101.78

August 71.50 15.60 31.06 132.99

September 73.99 15.30 40.01 131.71

October 71.49 17.10 23.53 137.84

November 66.82 15.98 28.00 115.66

December 66.96 18.53 28.00 133.16

January 68.66 17.65 32.47 123.34

February 73.37 19.17 31.71 161.78

March 67.90 22.63 32.41 140.43

April 72.01 21.59 23.50 152.82

May 69.02 17.74 23.94 119.53

June 75.60 20.18 28.09 133.38
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Monthly Average PUN. Off-Peak Hour. 2011-2012

After preliminary analysis of dataset, market demand was derived. In
each hour of the two years I ranked the bids according to the merit order
(price descending order); I included also the rejected bids in order to have
the estimation of elasticities relative to the prices of demand curve lower
than equilibrium price. These latter elasticities represent infact the real
responsiveness to change in price of purchaser less incline to buy. Then,
I aggregated all inelastic bids (bids with submitted price equal to 3000),
computing in this way the market point of demand corresponding to the
intercept. Finally I derived the remaining downward sloping market demand
curve by horizontal sum of bids characterized by the same price.
Finally, each monthly Dataset accounts for a sample size ranging from

15558 observations (for February 2011) to 29496 observations for July 2012.



Chapter 4

Multivariate Regression Model

4.1 Electricity Demand Model: A Review

Since the early 1970s, when energy caught the attention of policy makers in
the aftermath of the first oil crisis, research on energy demand has vastly
increased in order to overcome the limited understanding of the nature of
energy demand and demand response due to the presence of external shocks
encountered at that time. Moreover, the increase in population and the
pressure for better living standards, the emphasis on large scale industrial-
ization in developing countrires and the need to sustain positive economic
growth rates had led worldwide to a fast increase in energy consumption. In
the last 20 years, the strong and constant increase in energy consumption
has imposed an accurate planning in order to avoid eletricity shortage and
guarantee adeguate infrastructures.
Given this fact, economic model and estimation tecniques become essen-

tial features for energy planning, formulating strategies and recommending
energy policies.
The main limitations and problems to be faced in the estimation models

concern:
1) Modeling tools do not always give representation of a scenario able

(good) to deal with uncertainty. The same problem comes up again with the
characterization of the behaviour of economic agents.
2) Models are not concerned about the social and environmental issues

conditioning energy policy. Moreover models do not include an adequate and
detailed mathematical representation of the effects of technology employed.
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3) Models are based on the unrealistic assumptions of perfectly func-
tioning markets, fully employed and effi ciently allocated resources, rational
individuals and optimizing firm behaviour.
Energy demand analysis may be referred to different kinds of approaches:

on one hand it should be mentioned the traditional approach which relies on
optimizing behaviour within the neoclassical framework. On the other hand
we have the engineering tradition that assumes a different behavioural as-
sumptions based on the satisfying approach (in the sense of Hebert Simon or
evolutionary approach for technological change) and beliefs. This divergence
in the views has dominated the energy literature in the past and led to two
distinct traditions of energy analysis: econometric approach and engineering
end-use approach [9].
Econometric approach has seen significant developments over the past

four decades. In the 1970s, the main aim was to understand the relationship
between energy and other economic variables.
The enginnering approach (also known as bottom-up approach) is a en-

ergy demand forecasting methhod that focuses on end-uses or final needs
at disaggregated level. The first systematic elaboration of the method was
reported by Lapillone (1978) 1. Since then, this approach gained prominence
through works at Institute of Applied System Analysis (IIASA), Interna-
tional Atominc Energy Agency (IAEA) and elsewhere has emerged as an
alternative method of demand forecastig. The motivation of this bottom-
up investigation raised from the imputation of high level of energy demand
registered in 1970s, even if prices were deeply increased, to end-consumers
needs. Prices clearly have significant influence in energy use decicisions, but
they are not all that matter. This method is infact based on the assumption
that the standard neoclassical economic framework is insuffi cient for energy
models aiming to explore the different dimension of potential policy impact.
The engineering approach involves the following step:

• Disaggregation of total energy demand into homogeneous end use cat-
egories

• Systematic analysis of social, economic and technological factors

• Organization of determinants into a hierarchical structure
1Lapillonne, B. (1978). Long-term Energy Demand Forecastin. A New Approach.

Enetgy Policy, 6:2, pp 140-157.
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• Formlization of the structure in mathemathical relationships

• Scenario design for the future

• Quantitative forecating using mathemathical relations and scenarios.

This end-use aproacch can not be used in our investigation. In the end-
use tradition, the aggregated demand is obtained by summing demand at the
disaggregated levels.
Data I am going to analyzed refers to Electricity Wholesale Market and

they are not able to identify for each observation the homogeneous end use
category which belong to. Moreover, the demand side of MGP market is
essentially represented by industrial demand and eligible customers (natural
or legal persons entitled to choose their own supplier of electricity producer,
distributor and wholesaler) and traders, while the demand of domestic con-
sumers (the so called captive customers) is usually coverd by the Single Buyer.
On the other hand, in the econometric approach, the majority of the

studies have focused on the aggragated level of demand; for this reason our
approach will belong to this last technique.
The econometric approach is a standard quantitative approach for eco-

nomic analysis that establishes relationship between the dependent variable
and certain chosen indipendent variables by statistical analysis of historical
data. The relationship so determined can the be used for forecasting sim-
ply by considerig changes in the indipendent variables and determining their
effect on the dependent variable.
Griffi n 2 has identified three major developments since 1970s, namely the

trans-log method, panel data methodology and the discrete choice method.
Wirl and Szirucsek 3 remarked that the trans-log function emerged as the

preferred choice of researchers due to its flexible properties.
A large numbers of studies appeared in the 19070s and 1980s that ap-

plied the trans-log model at the aggregated and disaggregated level, includ-
ing Brendt and Wood [12] and Pindyck 4. On the other hand, the Panel

2Griffi n, J., (1993), Methodological advances in energy modelling: 1970-90. The Energy
Journal, 14:11, pp 111-124.

3Wirl, F. and E. Szirucsek, (1990). Energy modelling — a survey of related topics,
OPEC
Review, pp. 361-378.
4Pindyck, R. S. (1979). The structure of world energy demand, The MIT Press, Cam-

bridge, Massachusetts.
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Data analysis approach allows capturing interregional variations that can be
considered to reflect the long-term adjustment process as opposed to short
term adjustment process in the time series data.
Finally, the discrete choice method determines demand relying on the

capital stock and its utilization decisions. Despite its appeal, this method
found limited econometric use due to lack of stock data.
The main partecipants in the Italian Electricity wholesale Market are

industrial consumers using power as an input in the production function to
produce goods and services and traders. Industrial agents choose the amount
of electricity input which minimizes their cost funtion given the technological
constraint, for this reason our econometric approach will lie inside the neo-
classical framework and will be grounded on rational optimizing behaviour
theory.

4.1.1 Theoretical Background: The Duality Approach

Although data available refers only market prices and demand, the duality
approach gives us a theoretical justification, allowing to legitimately switch
from agent’s preference (optimization theory) to market demand (The Mar-
shallian demand) in which quantities are functions of prices and total expen-
diture. We assume all the agent taking part in the MGP rationally behave
minimizing a cost function.
Recalling the tradition introduced by Brendt and Wood the cost function

assumed is the translog cost function, that is the the second order approxi-
mation of an agent’s cost function. Its general form can be written as follow:

lnC = α0+
∑

αi ln pi+
1

2

∑
i

∑
j

γij ln pi ln pj+αQ lnQ+
1

2
γQQ(lnQ)2+

∑
i

γQi lnQ ln pi

(4.1)
where C is the total cost, i and j are the inputs for industrial consumers,

pi is the factor or good prices, Q is the objective variable (the objective
variable to be maximized: it can be the output quantity).
This cost function must satisfies certain properties:

• Homogeneous of degree 1 in prices;

• Satisfying all the conditions guaranteeing a well-behaved production
function
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• Homothetic (separable function of the objective variable and prices).

Then, we have to impose the following parameter restrictions:∑
αi = 1

γij = γji , i 6= j∑
i γij =

∑
j γji = 0∑

i γQi = 0
γQi = 0
γQQ = 0

Minimization problem is usually solved using Lagrangian techniques, lead-
ing to the first order condition:

∂C(Q, p)

∂pi
= hi(Q, p) = qi for all i (4.2)

Under the given assumptions, solving the problem yields to a demand
functions expressed in terms of prices and the objective variable : qi =
hi(Q, p).These functions are known as Hicksian demands and sometimes they
are called compensated demand equations because they consider the objec-
tive variable Q as a constant parameter.
For empirical works the optimization model need to be linked to econom-

ical model in which quantities are a function of prices and total expenditure.
The duality approach is the theoretical framework allowing to shift from the
production possibility sets (and the system of preferences) to the market
demand function.
Given the convexity of production possibility sets, the Roy Identity allows

to derive Marshallian demand from the Hicksian demand substituting the
objective variable Q in the Hicksian demand with its inverse function.
First we derive the Minimum Expenditure function and we put it into

indirect production function V (m, p), substituting m with C(Q, p) evalueted
at the optimum level. This lead to the trivial identity:

V (C(Q, p), p) = Q(m, p) (4.3)

where Q(m, p) is the production function of the maximization problem, p is
the price vector and m is the budget constraint.

This says that the indirect function V (C(Q, p), p), that minimizes the
cost for achieving a given level of production given a set of prices, is equal
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to Q evaluated at those prices . Taking the derivative of both sides of this
equation with respect to the price of a single input/good pi (with the Q’s
level held constant) gives:

V (C(Q, p), p)

∂Q
· ∂C(Q, p)

∂pi
+
V (C(Q, p), p)

∂pi
= 0 (4.4)

Rearranging what we obtain is:

∂C(Q, p)

∂pi
= −

V (C(Q,p),p)
∂pi

V (C(Q,p),p)
∂Q

= hi(Q, p) = gi(m, p) (4.5)

The function gi(m.p) represents the Marshallian demand which express
quantity demaded for an input or good as a function of its own price, the
budget constraint and the price of all the other goods.
Given the Marshallian demand function of electricity the multidimen-

sional model need to be reduced into a two dimensional problem. For this
reason, all the other goods and inputs will be bundled in a numeraire good.
The numeraire is evaluated at a price proxied by the monthly consumer price
index (adjusted excluding from its computation the energy consumption).

4.2 The Statistical Model

The model uses a log-linear demand function: the dependent variable is
the logarithm of aggregated demand and the explanatory variables are the
corresponding logarithm of prices, adjusted by the monthly consumer index
price (representing the price of the numeraire) and dummy variables (relative
to the day the zone etc...) which approximate the total expenditure.
Analitically, the model is:

log yi = αi + βi log(
pi
p

) +
∑

γkidki (4.6)

where yi represents a point of aggregated demand and i index the hour
of the day.
Given this functional form βi represents the hourly elasticity of electricity.
Regressors dki refer both to daily and zone intercept dummies and daily

and zone interaction dummies which allow to derive the hourly elasticity for
each day.
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Recalling the issue arised from the prelyminary analysis of datasets in
the previous chapter, the model has to process the information pertaining
the presence in the market of heterogeneous consumers. As I said before,
bids with no price cover a considerable portion of market and express the
maximum willingness to pay. Following the Bigerna and Bollino approach
[13], for simplicity, all bids are divided in just two groups representing two
categories of consumers.

• Bids specifying the price are considered referring to an elastic consumer

(aware of the wholesale market price signals) with demand y1 = f(p1)
having ε1 < 0.

• Bids with no price are gathered into a consumer category denoted by
a demand function: y2 = f(p2) with elasticity ε2 = 0.

Given different price responsiveness, the two kinds of consumers also differ
for their reservation price (the price make the demand equal zero) p∗1 = f−1

1 (0)
and p∗2 = f−1

2 (0) respectively with p∗2 < p∗1. Given the equilibrium price p∗,
the aggregate demand can fall in two cases:

• If p2 < p∗ ≤ p1, then the market demand is y = y1 + y2 = f1(p1),
with y2 = 0 the market demand is expresed only by the type 1 with
elasticity ε1.

• If p2 < p∗ ≤ p1, then the market demand is y = y1 + y2 = f(p∗), the
market demand is given by the aggregation of both type of consumers.

How the role of Single Buyer should be processed into the model is another
open question. Single Buyer is an intermediary agent buying elasticity from
the market and reselling it to distributors. Partecipants who submit demand
bids on benhalf of final customers can be seen as the agents in a principal-
agent relationship where the principals are the final users. In a principal-
agent framework, problems of moral hazard and conflicts of interest may
arise because of asymmetric information.
Opportunistic behaviour, as arbitraging between Day-Ahead Market and

Infra-Day Market, may be expected since Single Buyer holds high share of
quantity demanded. However, institutional market factors suggest the impos-
sibility for agents to have strategic behaviour. Arbitraging are not convenient
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because National Market Regulator imposes penalty charges if the real loads
deviate from the withdrawal prifiles defined in the Day-Ahead Market. For
this reason traders have to submit bids reflecting the real willingness to pay.
Since agent’s incentives are consistent with principal’s interest, the derived
equilibrium is Pareto-Optimal.
The above discussion shows that the theoretical model is able to represent

the rational economics behaviour of agent, as final consumers and traders,
presenting purchase bids into the electricity market.
Let divide the day into two groups of hours (peak and off-peak hours),

one ranging from 9 a.m. to 8 p.m. (the time period in which the majority
of consumption and economic activities take place), the second instead goes
from 21 p.m. to 8 a.m.. We expect that partecipants, within these two groups
of hours can affect the market price sensitivity: setting prices in advanced
gives purchasers the time to react to high prices, postpone their electricity
consumption, reshedule their activities and their demand profiles, flattening
in this way the load curves. Moreover, hourly average demand gives evidence
of the assumption of differentiated group of hours; the off-peak electricity
demand profiles substantially differ from those recorded during peak hours;
since some economic ativities can not be run, electricity demand is lower.
As tables below show, the total quantity submitted in a off-peak hours is on
average the 25% lower than the total quantity recorded in a peak hour.

Hour January  February March April May June July August Septeber October November December Average
Peak 41865.36 43244.02 40983.41 36767.31 37570.82 39353.03 42168.54 35166.48 40148.07 39132.19 41001.70 40035.42 39786.36

Off­Peak 31378.59 32682.33 31806.83 30134.98 30313.60 31614.65 34330.47 29644.57 32502.48 31245.96 31083.64 30348.19 31423.86

Diff 10486.77 10561.69 9176.58 6632.33 7257.22 7738.37 7838.07 5521.91 7645.58 7886.23 9918.06 9687.24 8362.50

Hourly Average Demand (MWh). Peak/Off Peak Hour. 2011

Hour January  February March April May June July August Septeber October November December Average
Peak 39725.59 42808.40 38228.20 34306.98 35172.65 39112.37 42415.71 35995.87 37519.21 36997.81 37052.36 37534.23 38072.45

Off­Peak 30187.59 32794.87 30370.54 28070.33 28185.90 30696.38 33420.18 29728.15 30023.83 29241.93 28653.32 28835.81 30017.40

Diff 9538.01 10013.53 7857.65 6236.65 6986.75 8415.99 8995.53 6267.72 7495.38 7755.89 8399.04 8698.42 8055.05

Hourly Average Demand (MWh). Peak/ Off Peak Hours. 2012.

Differences can be noticed even in Market Equilibrium Prices (PUN):
during peak hours, as demand is higher, equilibrium price is higher. Tables
below show summary statistics of hourly average PUN aggregated within
peak/off-peak group of hours.
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Hour Frequency Mean St. Dev. Min Max
Off­peak 4380 64.71 15.30 10.00 137.84

Peak 4380 79.75 14.66 31.00 164.80

Average PUN by Peak/Off-Peak Hours. 2011.

Frequency Mean Std. Dev. Min Max
Off­Peak 4392 70.08 20.99 14.88 324.20

Peak 4392 80.88 22.02 12.14 222.25

Average PUN by Peak/Off-Peak Hours. 2012

Given the differences in the main economics variables between peak and
off-peak hours, we assume that the hourly demands and the hourly spot
prices are correlated within each group. If the derived peak hour elasticities
will be higher than off-peak elasticities, the assumption of economic agents
conditioning market elasticity will be confirmed. On the other hand, if price
responsiveness during peak hours do not significantly differs from nigth hour
elasticities, we can conclude that purchasers have small market power and,
given their stiff consumption profiles, they can not influence market equilib-
rium prices and quantities.
Given this market structure, we apply a Seemingly Unrelated Regression

model. SUR model is a multiple equations regression model, in our case
regression equations are 12, one for each hours.

The SUR can be written as:

ymi = βm1xmi1 + βm2xmi2 + ...+ βmikxmik + εmi (4.7)

with i = 1, ..., N observations for m = 1, ...,M equations. M represents
the number of hours whoose electricity prices and loads are considered corre-
lated). ymi is the ith observation of the dependent variable (the log-demand)
in equation m, xmikm (with k = 1, ..., K) is the ith obeservation of the of ex-
plantory variable of the mth equation and βmk is the k regression coeffi cient
of the m−th equation.

Model can be written in a compact form. Let denote ym = (ym1, ..., ymN)′, εm =
(εm1, ..., εmN)′
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β =



β1

β2

.

.

βM


Xm =

[
x′m1 x′m2 . . x′mkm

]
and define k =

∑M
m=1 km.

Stack all vectors together as:

y =



y1

y2

.

.

yM



ε =



ε1

ε2

.

.

εM



X =



X1

X2

.

.

XM


the model obtained takes the following form:
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y = Xβ + ε

The SURmodel can be written as a familiar linear regression model. If we
assume εmi to be i.i.d N(0, σ2) for all m and all i, the model would simply
turn into the normal linear regression model. However, we have assumed
that market partecipants can reprogramming their activities and reschedule
their demand profiles (within the group of hours) if they suppose changes in
electricity prices. Therefore, εi must be i.i.d. N(0,Σ) just for i = 1, ..., N
where Σ is an N ×N full variance covariance matrix. With this assumption
it can be seen that ε is N(0,Ω) where Ω = Σ ⊗ IM is an NM × NM block
diagonal matrix gien by:

Ω =



Σ 0 . . 0

0 Σ . . 0

. . . . .

. . . . .

0 0 . . Σ


In the stacked model the number of all the explanatory variables (the

economic variables, the intercept dummies and the interaction dummies)
goes from 816 to 1032.
Bayesian technique imposes to set Prior distributions for all parameters

of interest, then, the next step will be to choose adeguate prior distribution
for βs parameters.

4.2.1 Prior Distributions

Usually Bayesian technique suggests to use natural conjugate priors, mak-
ing the β’s distribution be dependent on Ω, in this way the joint posterior
distribution would become: p(β,Ω) = p(β|Ω)p(Ω).
This joint prior has the advantage to derive analytically tractable joint

posterior distributions whoose main summary statistics are available, sparing
in this way the use of posterior simulator: However, the natural conjugate
prior for the SUR model has been found by many to be too restrictive. The
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prior covariances between coeffi cients in each pair of equations are infact all
proportional to the same matrix. For this reason, following the mainstream
literature, here I apply the extended version of the natural conjugate prior:
the indipendent Normal - Wishart prior:

p(β,Σ) = p(β)p(Σ) (4.8)

where:

p(β) = N(β0, V0) (4.9)

and

p(Σ) = IWν0(Λ
−1
0 ) (4.10)

where the prior distribution for the Variance-Covariance Matrix is an
Inverse Wishart distribution (the inverse matrix of Σ has a Wishart distrib-
ution, that is the matrix generalization of the Gamma distribution).

fW (Σ−1) =
1

cW
Λ
v0
2

0 |Σ|
−(

ν0−N
2

) exp

{
−1

2
tr(Λ0Σ−1)

}
(4.11)

with

cW = 2
ν0NM

2 π
NM(NM−1)

4

∏
i
Γ(
ν0 + i− 1

2
) (4.12)

When there are no pre-experimental information, this model allows to
use non-informative prior simply setting ν0 (which can be interpreted as the
number of pseudo-observation, i.e. the size of the fictious sample) equal to 0
and allowing to the prior variance of β (V0) to go to infinity. However, in this
study, prior hyperparameter elicitation comes from the previous empirical
study of Bigerna & Bollino [13]. Then, for the beta parameters I used a Nor-
mal Prior distribution centered on the frequentist hourly estimates referring
to the previous year (2010 and 2011).

4.2.2 Posterior Distributions

The posterior is proportional to the prior times the likelihood. Hence, if we
multiply the two priors with the likelihood function and we discard the terms
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that do not depend upon β and Σ, we obtain:

p(β,Σ|y) ∝ exp

{
−1

2

n∑
i=1

(yi −Xiβ)′Σ−1(yi −Xiβ)

}
×

|V0|−1/2 exp

{
−1

2
(β − β0)′V −1

0 (β − β0)

}
×

|Σ|−
1
2

(ν0+M+1) exp

[
−1

2
tr(Λ0Σ−1)

]
(4.13)

This joint posterior density for β and Σ does not take any well-known
functional form and, hence, it can not be directly used for posterior inference
given that integrals as the expected values for β are not analytically deriv-
able. Posterior simulation is required since there is not an analytical formula.
However, we can recover the well-known kernel of the full conditional poste-
rior denities: p(β|y,Σ) and p(Σ|y, β).

p(β|y,Σ) = N(βn, Vn) (4.14)

p(Σ|y, β) = IWνn(Λ−1
n ) (4.15)

where:

Vn = (V −1
0 + nΣ−1)−1, (4.16)

βn = Vn(V −1
0 β0 + nΣ−1y), (4.17)

νn = ν0 + n, (4.18)

Λn = Λ0 +

n∑
i=1

(yi − β)(yi − β)′. (4.19)

For β the full conditional posterior distribution is a Normal, while for Σ is

an Inverse Wishart. Also these two distributions combine data and prior in-
formation. However, given the two full conditional posteriors, the joint pos-
terior distribution p(β,Σ|y) keeps remaining untractable since p(β,Σ|y) 6=
p(β|Σ, y) · p(Σ|β, y). Inference related to the joint posterior distribution of
the random parameters β and Σ has not been possible yet and this com-
putational issue needs to be resolved since it is essential to derive various
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numerical summaries of the parameters (such as their posterior expected
values and variances).
A broad class of computational alghorithms can help to perform simu-

lation aiming to approximate a general density (in this case the posterior
distribution p(β,Σ|y) ) when it can not directly integrated.
When posterior full conditional distributions take a well-known form,

Gibbs sampler is the Markov Chain Monte Carlo algorithm usually adopted.
It imposes to factor the posterior distribution in the normal p(β|y,Σ) and
in the Wishart p(Σ|β, y) and then simulate the posterior using these two
conditional distributions.
The algorithm samples from the joint posterior distribution by construct-

ing a Markov Chain whose transition kernel adopts the two full conditional
distributions. The chain will converge to the posterior distribution since the
stationarity conditions are satisfied.
The Markov Chain is constructed using the following kernel:

K(θ(t+1), θ(t)) = K([β(t+1) Σ(t+1)], [β(t) Σ(t)])

= p(β(t+1)|Σ(t+1), y)p(Σ(t+1)|β(t), y) (4.20)

The algorithm undertakes the following steps:

1. Set an intial value for Σ = Σ(0) and then sample β from p(β|y,Σ(0))
and obtain the realization β(1).

2. Given β(1), sample Σ from the p(Σ|y, β(1)),

3. Repeat the step 1 and 2 11000 times.

After the algorithm was performed, the first subsample of 1000 realization
was discarded in order to avoid the chain to be dependent on the starting

value. The remaining sequence of draws
{(

β(i)′,Σ(i)′
)′}11000

i=1001

simulates a

sample from p(β,Σ|y).
Averaging the simulated sequence {βi} allows to derive a point estimates

for the beta coeffi cients. By the law of Iterated Expectations, these averages
can be infact considered as an estimatates of the expected values of the
marginal posterior distributions: p(β|y).
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Setting the number of replication equal to 11000 guarantees that the chain
takes enough steps to cover all the parameter space, diagnsotic procedure
shows satisfactory results: the convergence diagnostic tests performed do
not refuse the null hypotesis of convergence to the posterior density.

4.3 Empirical Results

The statistical model has been applied to data referring the whole 2011 and
the first semester of 2012, the whole computation has been performed using
MatLab, we have derived the full posterior distributions of the coeffi cients
and the variances for each hour within the group of equations.

For each system of equations we derive the hourly-elasticity for each day of
the month by simply adjusting the coeffi cient related to the log-price regres-
sors through the coeffi cient related to the daily (iteration) dummy variables.
In this way we have derived all beta elasticity for each hour and each day.

In order to have some statistical summaries we aggregated the later esti-
mates in the hourly average elasticity for each month.

The tables below show the derived results:
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Hour January February March April May June July August September October November December

9 ­0.0243 ­0.0433 ­0.115 ­0.0958 ­0.0728 ­0.0327 ­0.0569 ­0.0608 ­0.0363 ­0.0744 ­0.028 ­0.0434

10 ­0.056 ­0.109 ­0.071 ­0.0914 ­0.1415 ­0.0459 ­0.0601 ­0.0563 ­0.0325 ­0.0793 ­0.0298 ­0.0488

11 ­0.0482 ­0.1099 ­0.0468 ­0.0855 ­0.0617 ­0.0365 ­0.0608 ­0.0626 ­0.0193 ­0.0876 ­0.0337 ­0.0432

12 ­0.0588 ­0.1108 ­0.1147 ­0.0655 ­0.0572 ­0.0374 ­0.0552 ­0.079 ­0.0214 ­0.0469 ­0.0407 ­0.0458

13 ­0.0513 ­0.097 ­0.0757 ­0.0684 ­0.1513 ­0.0349 ­0.0568 ­0.0648 ­0.023 ­0.0597 ­0.1103 ­0.0366

14 ­0.0618 ­0.1131 ­0.1206 ­0.0719 ­0.1479 ­0.0293 ­0.0675 ­0.084 ­0.0263 ­0.0715 ­0.0431 ­0.043

15 ­0.0491 ­0.0794 ­0.1135 ­0.0705 ­0.1615 ­0.0359 ­0.0479 ­0.0705 ­0.0234 ­0.0462 ­0.0314 ­0.0414

16 ­0.0438 ­0.0225 ­0.1082 ­0.0741 ­0.0772 ­0.0189 ­0.0699 ­0.063 ­0.0241 ­0.0611 ­0.0392 ­0.0435

17 ­0.0345 ­0.079 ­0.0742 ­0.0771 ­0.1747 ­0.0262 ­0.0733 ­0.0415 ­0.0269 ­0.0731 ­0.0367 ­0.0572

18 ­0.0486 ­0.0222 ­0.0928 ­0.0707 ­0.1654 ­0.0373 ­0.0792 ­0.0516 ­0.0127 ­0.061 ­0.0282 ­0.0522

19 ­0.0548 ­0.015 ­0.1124 ­0.0924 ­0.123 ­0.0359 ­0.0706 ­0.0473 ­0.0095 ­0.0472 ­0.0352 ­0.0524

20 ­0.0365 ­0.0147 ­0.0616 ­0.0972 ­0.127 ­0.0265 ­0.0689 ­0.0516 ­0.0089 ­0.0532 ­0.01 ­0.0416

21 ­0.0428 ­0.0176 ­0.0506 ­0.0467 ­0.065 ­0.0459 ­0.0466 ­0.0019 ­0.0529 ­0.0249 ­0.0529 ­0.0736

22 ­0.051 ­0.009 ­0.0511 ­0.04 ­0.1406 ­0.0286 ­0.0522 ­0.0183 ­0.0357 ­0.0382 ­0.0532 ­0.079

23 ­0.0284 ­0.0185 ­0.087 ­0.0546 ­0.0644 ­0.0336 ­0.0537 ­0.0446 ­0.0507 ­0.0237 ­0.0459 ­0.0694

24 ­0.0573 ­0.0375 ­0.1408 ­0.0566 ­0.0615 ­0.0498 ­0.0461 ­0.0447 ­0.0399 ­0.0167 ­0.0467 ­0.0639

1 ­0.0648 ­0.0791 ­0.1214 ­0.0615 ­0.1524 ­0.0477 ­0.0439 ­0.0542 ­0.0916 ­0.0314 ­0.0502 ­0.0496

2 ­0.0522 ­0.0792 ­0.1638 ­0.0746 ­0.1596 ­0.0487 ­0.0398 ­0.0791 ­0.0558 ­0.0383 ­0.069 ­0.0591

3 ­0.0379 ­0.0855 ­0.109 ­0.0589 ­0.1606 ­0.0518 ­0.046 ­0.0715 ­0.0641 ­0.0366 ­0.071 ­0.049

4 ­0.052 ­0.0922 ­0.1952 ­0.0733 ­0.0833 ­0.0477 ­0.0419 ­0.0583 ­0.0759 ­0.0347 ­0.0595 ­0.0647

5 ­0.0446 ­0.081 ­0.1491 ­0.0466 ­0.1756 ­0.0366 ­0.0548 ­0.0635 ­0.0581 ­0.0257 ­0.0783 ­0.0746

6 ­0.0682 ­0.076 ­0.1472 ­0.0561 ­0.1711 ­0.0525 ­0.0454 ­0.0588 ­0.0786 ­0.0403 ­0.0561 ­0.0682

7 ­0.0638 ­0.0504 ­0.135 ­0.0553 ­0.1239 ­0.0541 ­0.037 ­0.0867 ­0.0847 ­0.0492 ­0.0383 ­0.0591

8 ­0.0667 ­0.0114 ­0.1001 ­0.0421 ­0.1269 ­0.0577 ­0.0434 ­0.0425 ­0.0878 ­0.0243 ­0.0411 ­0.0821
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Hourly Average Elasticity. 2011
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January February March April May June

9 ­0.0409 ­0.0454 ­0.0738 ­0.0585 ­0.0757 ­0.1305

10 ­0.0614 ­0.0534 ­0.07 ­0.0423 ­0.0787 ­0.1122

11 ­0.0313 ­0.0504 ­0.0772 ­0.0392 ­0.0502 ­0.1206

12 ­0.0375 ­0.0829 ­0.0771 ­0.0555 ­0.0574 ­0.1303

13 ­0.0337 ­0.0607 ­0.0667 ­0.0499 ­0.0485 ­0.1125

14 ­0.0358 ­0.065 ­0.059 ­0.0654 ­0.0522 ­0.0974

15 ­0.0308 ­0.0646 ­0.0715 ­0.0495 ­0.0691 ­0.1177

16 ­0.0353 ­0.0762 ­0.0793 ­0.0691 ­0.0714 ­0.136

17 ­0.0338 ­0.0717 ­0.0903 ­0.0713 ­0.0791 ­0.1178

18 ­0.0367 ­0.0401 ­0.0726 ­0.0521 ­0.0802 ­0.1101

19 ­0.0458 ­0.0438 ­0.0762 ­0.0605 ­0.0761 ­0.0862

20 ­0.0418 ­0.0353 ­0.0703 ­0.067 ­0.0632 ­0.0863

21 ­0.0474 ­0.0503 ­0.0762 ­0.0431 ­0.0207 ­0.0134

22 ­0.06354 ­0.0528 ­0.0655 ­0.0425 ­0.0192 ­0.0184

23 ­0.059 ­0.0819 ­0.0847 ­0.0528 ­0.0187 ­0.0156

24 ­0.0541 ­0.0456 ­0.0912 ­0.0516 ­0.0206 ­0.0123

1 ­0.0652 ­0.0923 ­0.0547 ­0.0865 ­0.0325 ­0.0231

2 ­0.0667 ­0.0549 ­0.0824 ­0.0828 ­0.0378 ­0.0171

3 ­0.0645 ­0.0691 ­0.0869 ­0.0652 ­0.0321 ­0.0168

4 ­0.0729 ­0.0641 ­0.0732 ­0.0739 ­0.0265 ­0.0164

5 ­0.0748 ­0.072 ­0.0663 ­0.0833 ­0.023 ­0.0184

6 ­0.0832 ­0.0859 ­0.0619 ­0.0861 ­0.0195 ­0.0186

7 ­0.0538 ­0.0709 ­0.098 ­0.0796 ­0.0176 ­0.019

8 ­0.0537 ­0.0606 ­0.0732 ­0.055 ­0.0156 ­0.0153
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Huorly Average Elasticity. I Semester 2012

Firstly, it can be noticed that average elasticities vary within the hours of
the day, months and the years. In 2011 estimates go from a minimum value
of -0.0019 (registered in August) to -0.1952 recorded in March. In the 2012
the extent of the range between minimum and maximum values is tinier, the
minimum value (equal to -0.0123) was registerd in June at 0 a.m., while the
maximum, equal to -0.136, was recorded in June at 4 p.m. On average hourly
elasticities in the 2011 are greater than in the 2012.



100 CHAPTER 4 MULTIVARIATE REGRESSION MODEL

Secondly, in 2011 elasticities are higher during the off-peak hours. In the
peak hours period, electricity quantities traded are greater than the average
as it is shown by the previous tables and confirmed by high frequency of con-
gestion. High quantities traded reflect high levels of expenditure and higher
price level. From literature we know that a driver of elasticity is the price
level which usually is positive correlated with it. On the other hand, income
level is negative correlated with price sensitivity. It means that, during peak
hours the majority of market partecipants are characterized by high level of
income and greater expenditure availability. Other factors affecting elasticity
are the availability of substitutes for the commodity under exam, the possi-
bility of postponing its consumption and the force of habit. Demand for a
commodity having valid substitute is relatively more elastic. The possibil-
ity of postponing consumption is positive correlated with demand elasticity.
During the peak period of the day, economic activities use electricity as an
essential commodity and for this reason they are not able to postpone their
consumption, reschedule their demand profile and flat the load curve.
Despite the wider set of energy sources (renewable sources as solar) may

suggest the existence of substitutes that increases demand elasticity, during
the peak period, price sensitivity is lower and this suggests a stiff and less
flexible consumer’s behaviour.
In the off-peak hours partecipants are more responsive to changes in price.

This may be explained by the more consistent partecipation of agents with
lower income level. As we seen before, off-peak electricity traded is on average
lower than peak quantity. The average of this economic variable proxies
lower purchasers’income levels which could explain higher elasticity. Strictly
expenditure constraints make infact consumers more reactive to change in
prices, since it has greater impact on their budget. In the off-peak hours,
electricity has become a luxury good whose consumption is not necessary and
can be postponed since the market has covered demand electricity for the
economic activities during the peak hours. Moreover, during off-peak hours
lower equilibrium prices had been recorded, it means that a lower portion of
income is allocated for electricity compared with the budget shares of other
inputs and goods. The budget share allocated for a commodity affects its
demand elasticity: as lower is the share for an input, as greater will be the
impact of change in price on the share it-self and on its consumption level.
Let compare our elasticities with estimates derived by Bigerna and Bollino

[13] for the 2011 (from January to September). Our aggregation has been
different since we derive hourly average elasticities per each month of the
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2011. A quick look sugggests that our estimates are not so different from
the previous frequentist results, especially for what concerns the peak hour
elasticities. The only difference is that in our research the maximum average
elasticity (equal to -0.073) has been observed at 2 p.m. while in Bollino’
paper at 12 p.m and it is equal to -0.09. Observing off-peak hours elasticities
our summaries statistics show a behaviour completely different, within this
group, parameters have more variability and the maximum values of average
elasticities, equal to -0.076, was recorded at 6 a.m. Moreover, on average
peak elasticities are less than off-peak estimates in contrast with the con-
clusion of the previous literature. Theoretical framework can legitimate our
conclusions, since, during the off-peak period, the quantity traded, and the
frequency of submit bid are smaller than those recorded during the day. As
economic activities slow down during the off-peak hours, lower level of de-
mand and the reduced risk of congestion curtails the sellers’market power.
On average Bayesian estimates are (in absolute value) higher then frequentist
estimates. It depend on using for the beta parameters a normal disitribution
truncated at zero as a prior distribution. This density, exploiting the infor-
mation derive from frequentist studies, restricts the parameter space which
will be explored by the algorithm making inferential results more negatives.
During the 2012 a turning trend is instead recorded. Peak elasticities

are on average higher than off-peak ones. It may depend on an increasing
presence of unit commitments using renewable sources. In particular photo-
voltaic plants have sharply increased during the 2012 and market recognized
them dispatching priority (priority in the economic merit order according to
which the offers are ranked for Market Resolution). Renewable sources are
effective substitutes 5 of traditional sources and they have enlarged tradi-
tional fuel mix used for generation. During these hours, the presence of a
greater number of sellers and substitute can increase the price responsiveness
of purchasers.
Next tables show aggregated estimates by quarter confirming the previous

conclusions. In the 2011 three of four quarters (the first, the third and the
fourth qaurter) show off-peak average elasticities higher than the peak elas-

5D.L. n 91/2014, Disposizioni urgenti per il settore agricolo, la tutela ambientale e
l’effi cientamento energetico dell’edilizia scolastica e universitaria, il rilancio e lo sviluppo
delle imprese, il contenimento dei costi gravanti sulle tariffe elettriche, nonche’ per la
definizione immediata di adempimenti derivanti dalla normativa europea. GU n.144 del
24-6-2014
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ticities. The presence of economic activities diffi cult to be rescheduled during
the day can explain why electricity demand is less responsive to changes in
price during the peak hours.
In the 2012, instead, from the second quarter it can be noticed that

consumer’s price responsiveness increased during peak hours. Moreover, the
extent of the range between peak and off-peak elasticities became greater.
This tendency confirms the descriptive statistics shown above. During the
2012 the submitted quantities and the frequencies of inelastic bids has infact
decreased compared to the values recorded in the 2011 and it can be ascribed
to the increasing presence of substitutes of traditional energy sources.

I Quarter II Quarter III Qaurter IV Quarter I Quarter II Quarter

Peak ­0.0692 ­0.0783 ­0.0490 ­0.0494 ­0.0566 ­0.0849

Off­Peak ­0.0755 ­0.0752 ­0.0542 ­0.0511 ­0.0687 ­0.0453

2011 2012
Average Elasticity

Peak / Off-Peak Average Elasticity by Quarter. 2011-2012

The monthly aggregation enlightens that in 2011 winter average elastici-
ties do not much differ from the corresponding values recorded in the summer
months. Here we can see how the effects of dispatching priority recognized to
photovoltaic plants (working for more hours during the summer) are not so
appreciable. Although incentives and dispatching priority were introduced
to promote market integration of renewable generation plants one of the
result has been a distortion of market signals. Photovoltaic plants, whose
marginal cost are usually null, profit by the competitive advantages of dis-
patching priority since they can be ensured to operate in the market offering
higher price than the average. The recent attempt of Italian government
to reshape the structure of incentives, reducing the amount of subsidies to
photovoltaic plants, confirms a tendency to reduce the distortion in the com-
petition measures promoting renewable sources; the decision enlighten infact
how incentives to photovoltaic had been lower than benefits they had led.
Subsidies were defined in order to overcome the market failure whose sig-
nals (the prices) did not include environmental esternalities. New regulation
should be always preceded by preliminary benefit/cost analysis, however, this
market failure would not justify in Italy the extent of subsidies and just in
the last few years it has been disclosed the awareness that the environmental
costs were lower than incentives financed by contributors.
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January February March April May June July August September October November December

­0.0499 ­0.0606 ­0.1065 ­0.0678 ­0.1228 ­0.0397 ­0.0549 ­0.0565 ­0.0433 ­0.0477 ­0.0470 ­0.0559

Average Elasticity

Monthly Average Elasticity. 2011.

January February March April May June
­0.0510 ­0.0621 ­0.0749 ­0.0618 ­0.0452 ­0.0651

Average Elasticity

Monthly Average Elasticity. Jan.-Jun. 2012.

As regards to zone segmentation, we computed average elasticities within
the group of hours having the same number of zone segmentation after con-
gestion. The 2012 shows increasing tendency to congestions which can ex-
plain the reducing yearly elasticity.
In the first semester of the 2011 and 2012 elasticities were higher when

congestions occurred and there was the maximum segmentations of the mar-
ket (division in three and four zones), while in the second semester of 2011 the
elasticity behaviour turned around: higher levels of elasticity were recorded
when single market occurred. We have to remember that congestions are
physical violations of transmission constraints given higher levels of quantity
traded; then the derived results for the second semester may confirm the
hypotesis that presence of congestions is negative correlated with elasticity.

Average Peak Off­Peak Average Peak Off­Peak Average Peak Off­Peak

5 0 0 0 0 0 0 0 0 0

4 ­0.076 ­0.074 ­0.078 ­0.046 ­0.041 ­0.052 ­0.070 ­0.068 ­0.064

3 ­0.073 ­0.075 ­0.071 ­0.053 ­0.050 ­0.056 ­0.063 ­0.070 ­0.059

2 ­0.070 ­0.075 ­0.066 ­0.051 ­0.050 ­0.052 ­0.064 ­0.072 ­0.058

1 ­0.063 ­0.061 ­0.065 ­0.053 ­0.053 ­0.052 ­0.058 ­0.082 ­0.045

2012 First Semester2011­First Semester 2011­Second Semester
Zone

Average Elasticity by Zone Segmentation. 2011-2012.

The decomposition of average elasticities between peak and off-peak hours
shows that within peak period, the lower elasticities were recorded when
both single market and maximum segmentation market (four zone division)
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occurred. The lowest average elasticity was recorded in the presence of max-
imum segmentation of national market that gives evidence of higher levels of
demand and income. As we said before, high levels of expenditure availabil-
ity affect demand elasticity reducing the responsiveness to change in price.
Moreover, congestions during the peak hours may suggest that electricity is
an essential commodity whose demand is stiff and whose consumption can
not be postponed.
Looking at off-peak hour elasticities, they show an inverted behaviour,

since they are higher when there are congestions. During off-peak hours
electricity is less allocated for industrial uses and it means that traders have
a more flexible behaviour when the quantities traded are greater.

Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 5 ­0.050 11 ­0.073 4 ­0.105 1 ­0.062 16 ­0.118 17 ­0.035

3 91 ­0.049 146 ­0.064 125 ­0.094 110 ­0.079 107 ­0.134 133 ­0.029

2 269 ­0.047 178 ­0.074 226 ­0.091 215 ­0.081 225 ­0.121 205 ­0.034

1 7 ­0.033 1 ­0.002 17 ­0.104 34 ­0.085 24 ­0.102 5 ­0.043

JuneJanuary February March April May

Peak Average Elasticity by Zone Segmentation. Jan.-Jun. 2011.

Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 22 ­0.065 0 . 10 ­0.020 7 ­0.057 1 ­0.020 2 ­0.044

3 152 ­0.060 52 ­0.067 221 ­0.022 146 ­0.066 163 ­0.041 137 ­0.045

2 196 ­0.062 311 ­0.060 124 ­0.023 202 ­0.063 156 ­0.044 202 ­0.046

1 2 ­0.076 9 ­0.088 5 ­0.019 17 ­0.054 40 ­0.034 31 ­0.048

July August September October November December

Peak Average Elasticity by Zone Segmentation. Jul.-Dec. 2011
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Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 7 ­0.052 10 ­0.044 3 ­0.187 8 ­0.059 15 ­0.071 18 ­0.054

3 117 ­0.056 73 ­0.060 105 ­0.128 152 ­0.055 162 ­0.077 123 ­0.050

2 121 ­0.057 135 ­0.056 122 ­0.122 120 ­0.051 165 ­0.072 157 ­0.037

1 127 ­0.056 118 ­0.054 141 ­0.120 80 ­0.050 30 ­0.065 62 ­0.047

January February March April May June

Off-Peak Average Elasticity by Zone Segmentation. Jan.-Jun. 2011

Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 25 ­0.044 5 ­0.027 7 ­0.079 7 ­0.044 1 ­0.039 4 ­0.078

3 193 ­0.045 162 ­0.059 172 ­0.074 93 ­0.036 94 ­0.054 67 ­0.070

2 109 ­0.044 128 ­0.051 99 ­0.060 155 ­0.036 127 ­0.055 153 ­0.065

1 45 ­0.044 77 ­0.060 82 ­0.058 117 ­0.034 138 ­0.053 148 ­0.065

July August September October November December

Off-Peak Average Elasticity by Zone Segmentation. Jul.-Dec. 2011

Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 14 ­0.060 0 . 0 . 0 . 0 .

4 0 . 186 ­0.057 2 ­0.085 3 ­0.049 0 . 1 ­0.118

3 77 ­0.038 145 ­0.057 88 ­0.076 113 ­0.058 64 ­0.067 126 ­0.110

2 285 ­0.037 3 ­0.067 254 ­0.074 214 ­0.056 266 ­0.066 202 ­0.114

1 10 ­0.039 0 . 28 ­0.075 30 ­0.053 42 ­0.070 31 ­0.120

JuneMayJanuary February March April

Peak average Elasticity by Zone Segmentation. Jan.-Jun. 2012.
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Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 30 ­0.066 2 ­0.072 0 . 0 . 0 .

4 2 ­0.050 159 ­0.069 32 ­0.085 6 ­0.051 0 . 9 ­0.021

3 93 ­0.060 122 ­0.070 112 ­0.076 60 ­0.067 64 ­0.021 98 ­0.019

2 199 ­0.059 37 ­0.063 143 ­0.079 212 ­0.067 231 ­0.020 211 ­0.017

1 78 ­0.063 0 . 82 ­0.073 82 ­0.067 77 ­0.022 42 ­0.017

January February March April May June

Off-Peak average Elasticity by Zone Segmentation. Jan.-Jun. 2012.

Elasticities aggregated by PUN (the market equilibrium price) percentiles
show higher values for lower perccentiles (both in peak and off peak hours).
Peak elasticities show larger variability, ranging from (-0.065 to -0.046).
Lower price levels means lower quantities traded and lower income level,
thus, as we said before, Industrial consumers and traders with limited expen-
diture availability (referring essentially to domestic user) have more flexible
behaviuor given changes in price.

Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak
10 ­0.0536 . ­0.0282 . ­0.1024 ­0.1390 ­0.0870 ­0.0617 ­0.0976 ­0.0682 ­0.0276 ­0.0214
9 ­0.0533 . ­0.0358 ­0.0103 ­0.0997 ­0.1007 ­0.0837 ­0.0517 ­0.1386 ­0.0780 ­0.0310 ­0.0502
8 ­0.0470 ­0.0600 ­0.0759 ­0.0722 ­0.0925 ­0.1295 ­0.0889 ­0.0549 ­0.1324 ­0.0752 ­0.0328 ­0.0428
7 ­0.0464 ­0.0593 ­0.0819 ­0.0649 ­0.0920 ­0.1308 ­0.0829 ­0.0484 ­0.1397 ­0.0673 ­0.0344 ­0.0456
6 ­0.0503 ­0.0586 ­0.0666 ­0.0608 ­0.0926 ­0.1391 ­0.0797 ­0.0583 ­0.1229 ­0.0723 ­0.0350 ­0.0411
5 ­0.0480 ­0.0505 ­0.0773 ­0.0601 ­0.0883 ­0.1133 ­0.0788 ­0.0528 ­0.1024 ­0.0754 ­0.0302 ­0.0409
4 ­0.0437 ­0.0580 ­0.0728 ­0.0483 ­0.0879 ­0.1211 ­0.0820 ­0.0494 ­0.1088 ­0.0685 ­0.0328 ­0.0457
3 ­0.0454 ­0.0547 ­0.0800 ­0.0602 ­0.0882 ­0.1276 ­0.0760 ­0.0527 ­0.1030 ­0.0735 ­0.0299 ­0.0388
2 ­0.0433 ­0.0568 ­0.0918 ­0.0585 ­0.0868 ­0.1315 ­0.0756 ­0.0514 ­0.0800 ­0.0787 ­0.0305 ­0.0460

1 . ­0.0567 . ­0.0524 . ­0.1163 ­0.0801 ­0.0536 ­0.0676 ­0.0715 ­0.0153 ­0.0483

JunMay
Percentile

January February March April

Montlhy average Elasticity by PUN Percentile. Jan.-Jun. 2011.
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Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak
10 ­0.0611 ­0.0469 ­0.0480 ­0.0663 ­0.0250 ­0.0700 ­0.0608 ­0.0337 ­0.0360 ­0.0514 ­0.0449 ­0.0629
9 ­0.0620 ­0.0455 ­0.0526 ­0.0576 ­0.0199 ­0.0726 ­0.0620 ­0.0373 ­0.0397 ­0.0580 ­0.0477 ­0.0670
8 ­0.0614 ­0.0461 ­0.0616 ­0.0489 ­0.0198 ­0.0651 ­0.0639 ­0.0350 ­0.0506 ­0.0500 ­0.0463 ­0.0675
7 ­0.0593 ­0.0447 ­0.0621 ­0.0605 ­0.0243 ­0.0699 ­0.0682 ­0.0340 ­0.0437 ­0.0583 ­0.0436 ­0.0670
6 ­0.0606 ­0.0445 ­0.0646 ­0.0568 ­0.0290 ­0.0646 ­0.0672 ­0.0363 ­0.0420 ­0.0544 ­0.0477 ­0.0645
5 ­0.0615 ­0.0454 ­0.0639 ­0.0545 ­0.0238 ­0.0629 ­0.0560 ­0.0367 ­0.0523 ­0.0547 ­0.0471 ­0.0649
4 ­0.0630 ­0.0449 ­0.0692 ­0.0489 ­0.0145 ­0.0549 ­0.0695 ­0.0342 ­0.0415 ­0.0528 ­0.0445 ­0.0668
3 ­0.0635 ­0.0425 ­0.0680 ­0.0595 ­0.0171 ­0.0730 ­0.0699 ­0.0349 ­0.0440 ­0.0567 ­0.0485 ­0.0719
2 ­0.0620 ­0.0470 ­0.0754 ­0.0511 ­0.0141 ­0.0576 ­0.0782 ­0.0370 ­0.0429 ­0.0543 ­0.0505 ­0.0630

1 ­0.0604 ­0.0424 ­0.0884 ­0.0525 . ­0.0732 ­0.0447 ­0.0355 ­0.0449 ­0.0519 . ­0.0668

December
Percentile

July August September October November

Monthly Average Elasticity by PUN Percentile. Jul.-Dec. 2011

Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak
10 ­0.0388 ­0.0564 ­0.0610 ­0.0669 ­0.0754 ­0.0756 ­0.0532 ­0.0665 ­0.0176 ­0.0190 ­0.1120 ­0.0687
9 ­0.0373 ­0.0583 ­0.0564 ­0.0740 ­0.0791 ­0.0790 ­0.0539 ­0.0604 ­0.0184 ­0.0221 ­0.1086 ­0.0679
8 ­0.0363 ­0.0621 ­0.0585 ­0.0616 ­0.0742 ­0.0784 ­0.0564 ­0.0666 ­0.0153 ­0.0188 ­0.1130 ­0.0681
7 ­0.0377 ­0.0576 ­0.0551 ­0.0715 ­0.0733 ­0.0802 ­0.0554 ­0.0581 ­0.0167 ­0.0251 ­0.1078 ­0.0642
6 ­0.0371 ­0.0577 ­0.0531 ­0.0689 ­0.0765 ­0.0752 ­0.0573 ­0.0691 ­0.0174 ­0.0205 ­0.1123 ­0.0670
5 ­0.0386 ­0.0616 ­0.0542 ­0.0679 ­0.0754 ­0.0778 ­0.0580 ­0.0701 ­0.0179 ­0.0205 ­0.1146 ­0.0664
4 ­0.0350 ­0.0585 ­0.0430 ­0.0675 ­0.0757 ­0.0811 ­0.0579 ­0.0657 ­0.0176 ­0.0194 ­0.1165 ­0.0684
3 ­0.0377 ­0.0587 ­0.0450 ­0.0691 ­0.0739 ­0.0749 ­0.0581 ­0.0708 ­0.0170 ­0.0198 ­0.1124 ­0.0669
2 ­0.0370 ­0.0589 ­0.0456 ­0.0686 ­0.0728 ­0.0807 ­0.0597 ­0.0678 ­0.0168 ­0.0210 ­0.1212 ­0.0632

1 . ­0.0639 ­0.0488 ­0.0657 ­0.0738 ­0.0746 ­0.0569 ­0.0696 ­0.0205 ­0.0198 ­0.1254 ­0.0680

Percentile
January February March April May Jun

Monthly Average Elasticity by PUN Percentile. Jul.-Dec. 2012
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Min. Max.
Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak

1 ­0.065 ­0.062 0.031 0.032 ­0.182 ­0.207 ­0.002 ­0.003
2 ­0.072 ­0.063 0.032 0.030 ­0.184 ­0.211 0.000 ­0.004
3 ­0.063 ­0.063 0.031 0.035 ­0.186 ­0.213 ­0.005 ­0.009
4 ­0.064 ­0.063 0.035 0.032 ­0.184 ­0.212 ­0.001 ­0.010
5 ­0.068 ­0.064 0.038 0.033 ­0.180 ­0.210 ­0.003 ­0.006
6 ­0.068 ­0.060 0.040 0.033 ­0.184 ­0.205 ­0.003 ­0.004

7 ­0.061 ­0.059 0.038 0.027 ­0.188 ­0.211 ­0.002 ­0.003

8 ­0.060 ­0.058 0.040 0.028 ­0.184 ­0.211 0.000 ­0.005

9 ­0.053 ­0.059 0.033 0.024 ­0.181 ­0.214 0.000 ­0.006

10 ­0.046 ­0.059 0.025 0.022 ­0.125 ­0.200 0.000 ­0.010

Percentile
Mean Stand. Dev

Average Elasticity by PUN Percentiles. 2011

Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak
1 ­0.080 ­0.062 0.031 0.023 ­0.016 ­0.010 ­0.135 ­0.103
2 ­0.077 ­0.057 0.031 0.026 ­0.030 ­0.004 ­0.135 ­0.109
3 ­0.066 ­0.057 0.023 0.026 ­0.024 ­0.003 ­0.135 ­0.109
4 ­0.072 ­0.056 0.029 0.025 ­0.020 ­0.006 ­0.135 ­0.112
5 ­0.073 ­0.057 0.029 0.027 ­0.025 ­0.010 ­0.141 ­0.112
6 ­0.070 ­0.058 0.030 0.024 ­0.020 ­0.008 ­0.141 ­0.095
7 ­0.066 ­0.061 0.028 0.022 ­0.021 ­0.012 ­0.142 ­0.107
8 ­0.068 ­0.059 0.031 0.024 ­0.005 ­0.006 ­0.141 ­0.120
9 ­0.064 ­0.059 0.030 0.025 ­0.017 ­0.009 ­0.140 ­0.111

10 ­0.065 ­0.059 0.026 0.026 ­0.011 ­0.009 ­0.141 ­0.115

Percentile
Mean Stand. Dev Min. Max.

Average Elasticity by PUN Percentiles. 2012

To summarize, elasticity is higher during off-peak hour and maximum
segmentation division.



Chapter 5

The Heteroskedastic Model

In this chapter I postulate heterosedasticity assuming that hourly observa-
tions can have different price volatility and load variability.

Since observations refer to different hours, heteroskedasticity can be a
plausible assumption to be explored: each hour is characterized by different
price volatility and variability in the load which can be included in the model.

In the previous chapter we assumed the vector ε to be normal distributed
with block diagonal covariance matrix having the same elements Σ. This
statement is really a combination of a several assumptions, some of which
may be relaxed. The assumption that the error terms have mean zero is
an innocuos one since, if the model has non zero mean, this last can be
incorporated into the intercept. A new model, identical to the old except
for the intercept, can be created which have not mean zero errors. On the
other hand, the assumption that V ar(ε) = Σ⊗ IN is not innocuous in many
applications. In this chapter we consider an empirical way of relaxing this
assumption, in particular we assume:

1. For each equation the error terms εj, j = 1, ...,m have a multivari-
ate normal distribution with zero mean and covariance matrix Σj that is a
positive definite matrix.

2. All elements of X remain fixed (i.e. are not random variables).

Heteroskedasticity refers to a model where the covariance matrix of the
error terms are different across equations, that is, in the block diagnal matrix
Ω, the non-null matrix are different from each other:

109
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V ar(ε) = Ω =


Σ1 0 ... 0

0 Σ2 ... 0

... ... ... ...

0 0 ... Σm

 =


h−1 × Ω1 0 ... 0

0 h−1 × Ω2 ... 0

... ... ... ...

0 0 ... h−1 × Ωm


(5.1)

The same matrix can be written in terms of precison, substituting H−1
j

for Σj.
In this model we substitute for the covariance matrix Σ the precision

h (the inverse of the variance σ2 = h−1 such that: h−1 × Ωj = Σj for all
j = 1, ...,m. Moreover, we manage a hierarchical model, since we assume
that we do not know the values assumed by the elements of the Ωi matrixes.
This model allows to free up the normality assumption, since unknown het-
eroskedasticity is equivalent to a linear regression model with Student-t er-
rors.

5.1 The trasformed model

Before discussing the likelihood function, prior and posterior and computa-
tional issues, general results of the model are presented. Since Ω is a posi-
tive definite matrix, Cholesky decomposition can be applied, then it exist a
(Nm×Nm) matrix P with the property that PΩP ′ = INm.
Given the model:

y = Xβ + ε (5.2)

with εi|Ω ∼ N(0, h−1 × Ωi)
if we multiply both sides of the previous equation by P , we obtain the

trasformed model

y∗ = X∗β + ε∗ (5.3)

where y∗ = Py, X∗ = PX and ε∗ = Pε. It can be verified that
ε∗ ∼ N(0, INm). Hence the trasformed model falls again into the standard
Normal linear regression model. There are two important implications to be
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discussed. If Ω is known Bayesian analysis is straightforward, on the other
hand, if Ω is unknown, a computational issue arises since we need to derive
its posterior density.

5.2 The Likelihood Function

Using the properties of the multivariate Normal distribution, the likelihood
function of transformed model can be seen to be:

p(y|β, h,Λ) =
h
Nm
2

(2π)
N·m
2

|Λ| 12 exp

[
−h

2
(y −Xβ)′Ω−1(y −Xβ)

]
=

h
Nm
2

(2π)
N·m
2

exp

[
−h

2
(y∗ −X∗β)′(y∗ −X∗β)

]
(5.4)

We use indipendent Normal Gamma prior for β and h:

p(β) = N(β, V ) (5.5)

p(h) = G(ν0, s
−2
0 ) (5.6)

Moreover, we assume that β and h have distributions indipendent on Ω,
whose prior will be defined later.

p(β, h,Ω) = p(β)p(h)p(Ω) (5.7)

Comparing to the previous homoskedastic model, the first difference has
been to replace the covariance matrix with the scalar parameter h−1 = σ2

multiplied by Ωj, then the multivariate prior has changed in the correspond-
ing scalar version: the Gamma distribution.
As in the previuos chapter, the prior hyperparameter elicitation comes

from the previous empirical study (see Bigerna & Bollino [13]).

5.3 Posterior Distributions

The joint posterior distribution of all parameters is, as always, the likelihood
function times the priors:



112 CHAPTER 5 THE HETEROSKEDASTIC MODEL

p(β, h,Ω|y) ∝ p(Ω)×

exp

{[
−h

2
(y∗ −X∗β)′(y∗ −X∗β)

]}
× exp

{
−1

2
(β − β0)′V −1

0 (β − β0)

}
(5.8)

×h 1
2

(Nm+ν0−2) exp

[
− hν0

2s−2
0

]
This posterior is based on the notation related to the transformed model;

without writing the posterior distributions referring to the initial model, we
can notice that this joint posterior does not take any well-known form and
posterior inference needs the use of simulation in order to derive some useful
summary statistics related to the parameters.
As in the previous chapter, the full conditional posterior distributions are

derived.
The full conditional for β is a Normal:

β|y, h,Ω ∼ N(βn, Vn) (5.9)

where:

Vn = (V −1
0 + hXΩX)−1 (5.10)

and

βn = Vn(V −1
0 β0 + hXΩXβ̂(Ω)) (5.11)

with
β̂(Ω) = (X∗′X∗)−1X∗′y∗ = (X ′Ω−1X)−1X ′Ω−1y (5.12)

The posterior distribution of h conditional on the other parameters in the
model is a Gamma:

h|y, β,Λ ∼ G(s−2
n , νn) (5.13)

where:

νn = Nm+ ν0 (5.14)
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and

s2
n =

(y −Xβ)′Λ(y −Xβ) + ν0s
2
0

νn
(5.15)

Conditioning on Ω, the two full conditional distributions for β and h
combine data and prior information.
Given Ω, the full conditional distributions of β and h are ascribable to

a well-known analytical form, as in the traditional linear model, the Gibbs
Sampling algorithm can exploit this two densities and constructs a stationary
Markov Chain. The first part of simulation procedure has been defined.
However, the full conditional posterior of Ω does not take any recognizable
form:

p(Ω|β, h, y) ∝ p(Ω)|Ω| 12
{

exp

[
−h

2
(y −Xβ)′Ω−1(y −Xβ)

]}
(5.16)

The joint posterior distribution p(β, h,Ω|y) keeps remaining untractable
since p(β, h,Ω|y) 6= p(β, h|Ω, y) · p(Ω|β, h, y) and the inference related to
the random parameters β, h and Ω has not been possible yet: The prior
distribution for Ω needs to be deeplier investigated in order to design the
second component of similation.

5.4 Heteroskedasticity of unknown form

When Ω is an unknown parameter, the elements of the matrix Ω in (5.1)
become random variables. The treatment of heteroskedasticity of unknown
form is a challenging task and involves the use of a hierarcical prior. Hierar-
chical priors have played a big role in many recent developments in Bayesian
statistical theory and gradually have been becoming popular in econometrics
as well. They are commonly used as a way of making parameter-rich models
flexible to statistical analysis.

As it has already been done with the variance, that it has been replaced
by its precision h, also the different matrixes Ωj can be expressed in terms of
precision substituting for {Ωj}mj=1 their inverse {Λj}mj=1 ≡

{
Ω−1
j

}m
j=1

for all
j = 1, ..m.
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Introducing unknown heteroskedasticity increases the number of para-
meters to be estimated becoming k + 1 +N ∗ m2+1

2
; if we treat Λ1, ...,Λm as

completely indipendent and unrestricted matrixes, we would not have enough
observations to estimate each one of them. For this reason the exchangebil-
ity of Λi becomes an assumption essential to deal with this high dimensional
model. The prior for Λ becomes:

p(Λ) =

m∏
j=1

fW (Λj|Λ0, νλ) (5.17)

which states that Λjs are different from one another but they are i.i.d.
draws from the same Wishart distribution (the hierarchical prior). The hier-
archical prior imposes a structure to the model that preserves flexibility and
makes estimation be possible.

Some comments about the specification of the matrix Λ need to be done.
Previous litterature about heteroskedasticity has defined Λ as a simple diago-
nal matrix, without considering correlation across observations pertaining the
same equations. Given the exchangebility assumption, the non-null elements
of Λ have been considered scalars drawn from a gamma distribution. Then,
in the traditional heteroskedastic model, the prior is an univariate density.
Instead, as it is shown above, in the current model matrix Ωm are "full" since
it is assumed correlation across observations of the same equation. Then, I
adopted a multivariate density as hierarchical prior and that increases the
dimension of the inferential problem as the computational diffi culty.
Moreover, the use of aWishart prior distribution (or equivantely assuming

that Ωj are drawn from an inverse Wishart with scale equal to Λ−1
0 ) allows

to turn out a linear regression model with i.i.d. Student-t error terms with
νλ > m degrees of freedom.
In other words :

εi|Λ−1
i ∼ N(0, σ2

iΛ
−1
i ) (5.18)

Λi ∼ W (Λ0, νλ) (5.19)

εi ∼ t(0, σ2, νλ) (5.20)

The model becomes more flexible since Student-t distribution that is a
more general class of distributions that includes Normal density as a special
case (occurring when the degrees of freedom νλ tent to infinity).
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Our treatment of unknown heteroskedasticity is equivalent to a scale mix-
ture of Normal. The error tems εi are disributed according to a mixture of
m different normal distributions. That is:

εi =
∑
j

eij

(
αj + (Hj)

−1/2 ηij

)
(5.21)

where ηij is i.i.d N(0, Im) for i = 1, ..., N, j = 1...J and eij, αj and Hj are
all parameters. The eij is a dicotomous random variable and indicates which
distribution component in the mixture the ith error is drawn from.

eij =

{
1

0

if εj ∼ N(αj, Hj)

otherwise
(5.22)

Since it is unknown which component the ith error is drawn from, we
define pj = P (eij = 1) for j = 1, ...,m the probability of the error being
drawn from the jth component in the mixture. Formally it means that eij
are i.i.d draws from a Multinomial distribution

ei ∼M(1, p) (5.23)

where p = (p1...pm)′ is the probability vector p.
The assumption that Λi follows a Wishart distribution and that, given Λi,

the errors are indipendent Normal (0, h−1Λ−1
i ) is equivalent to the assump-

tion that the distribution of error term ε is a weighted average of Normals
having different variances but the same means (i.e. all errors have mean
equal to zero). When we mix the error terms’normal distributions using
fW (Λi|Λ0, νλ), they end up to be equal to the Student-t distribution. In-
tuitively, assuming that a Normal model is too restrictive, a more flexible
distribution taking a mixture (the weighted average) of Normals can be cre-
ated. As more and more Normals are mixed, as the distribution becomes
more and more flexible and can approximate any distribution with high de-
gree of freedom. Mixtures of Normal are powerful tool to be used when
economic theory does not suggest any particular form of likelihood function
and you wish to be more flexible.
However, this model use a finite mixture of Normal and it cannot be

considered non-parametric in the sense that it can not accomodate any dis-
tribution, it is "just an extremely flexible modeling strategy" (Koop [47]).
Parameter νλ is not known and Bayesian framework imposes to define a

prior distribution p(νλ). The prior of λ is specified in two steps, firstly we



116 CHAPTER 5 THE HETEROSKEDASTIC MODEL

specify p(Λ|νλ) =

N∏
i=1

fW (Λi|Λ0, νλ), secondly we define p(νλ); in this way

these two steps refer to a hierarchical prior model. p(Λ|νλ) and p(νλ) are the
features necessary to design the second part of the simulation procedure.
It must be mentioned the risk concerning the use for the degree of freedom

νλ an imoroper prior which allocates same probability to all values between
zero and infinite. For degrees of freedom greater than 100, where Student-
t distribution approach the Normal distribution, this prior, far from being
noninformative, states that the error terms are normally distributed.

5.5 Bayesian Computation

Now, let it focus on p(Λ|y, β, h, νλ) and p(νλ|y, β, h,Λ).

p(Λ|y, β, h, νλ) =
N∏
i=1

p(Λi|y, β, h, νλ) (5.24)

where

p(Λi|y, β, h, νλ) = W
(

(νλ +m) [h(εiε
′
i)]
−1

+ νλ, νλ +m
)

(5.25)

Conditional on β, εi can be calculated and hence also the parameters of
the Gamma density can be sampled within the Gibbs sampler.
Problems arise in the derivation of full conditional posterior for νλ. Since

νλ is positive we assume as a prior an exponential distribution that is a
gamma with two degree of freedom:

p(νλ) = G(ν0, 2) (5.26)

Then, the full conditional posterior is:

p(νλ|y, β, h,Λ) = p(νλ|Λ) ∝ p(Λ|νλ)p(νλ)1 (5.27)

The kernel of the posterior conditional of νλ is simply (5.24) times (5.26):

1Since νλ does not eneter in the likelihood p(νλ|y, β, h, λ) = p(νλ|λ).
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p(νλ|Λ) ∝ p(Λ|νλ)p(νλ)

∝
(νλ

2

)Nνλ
2

Γ
(νλ

2

)−N
exp(−ηνλ) (5.28)

where

η =
1

ν0

+
1

2

N∑
i=1

[
ln |Λ|−1

i ) + tr|Λ−1
0 Λi

]
(5.29)

The density derived in (5.28) is not again a standard one, so another
algorithm for the posterior simulation of the degree of freedom need to be
performed. The simulation strategy is the following:

• Find an algorithm which simulates a sample from p(νλ|Λ).

• Given νλ, run Gibbs Sampling simulating p(β, h,Λ, νλ|y) using the
{νtλ} sample, p(β|y, h,Λ) in (5.9) and p(h|y, β,Λ) in (5.13).

Formally, the full conditional to be used in the Gibbs Sampler should have
been p(β|y, h,Λ, νλ) and p(h|y, β,Λ, νλ), but condional on Λ, νλ adds no new
information and thus p(β|y, h,Λ, νλ) = p(β|y, h,Λ) and p(h|y, β,Λ, νλ) =
p(h|y, β,Λ).

When simulation concerns an univariate and bounded distribution, Geweke
[38] recommends the use of Importamce Sampling techniques for the simu-
lation of νλ from p(νλ). Here, I used the Random Walk Metropolis-Hastings
Algorithm.

The candidate generating function is q(ν(s−1)
λ ; ν∗λ) = N([ν∗λ − ν

(s−1)
λ ], 0.2)

and number of replications are set equal to 11000. After discarding the
first 1000 realizations, the chain

{
βi, hi, νiλ

}11000

i=1001
. The sequence simulate a

sample from the posterior p(β, h,Λ, νλ|y).

5.6 Empirical Results

The statistical model has been applied to data referring the whole 2011. Af-
ter relaxing homooskedastic assumption, average elsaticities have increased
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compared with their analogous in previous model. Moreover, allowing the
variance to differ across observations of the same equations has led the peak
hour elasticities to be, on average, higher than off-peak ones. The intro-
duction of new parameters (the heteroskedastic terms Ωi in the covariance
matrix) allows to process more information which determined the rise of peak
hours elasticities. Hourly average elasticities range from -0.1434, recorded in
September to -0.0360 recorded in November. Comparing to the off-peak es-
timates, peak hour elasticities show higher variability, going from -0.1434 to
-0.0484, while the off-peak ones vary between -0.070 and -0.0359. It means
that the application of heteroskedastic model affects essentially the variance
of peak estimates.
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­ 0 .0 5 7 2 ­ 0 .0 5 4 1 ­0 . 0 45 6 ­ 0 .0 5 9 2 ­0 .0 65 7 ­ 0 .0 4 3 4 ­0 .0 58 8 ­ 0 .0 5 7 6 ­ 0 .0 4 8 7 ­0 .0 7 0 6 ­0 . 04 1 9 ­0 . 06 1 2

­ 0 .0 5 7 3 ­ 0 .0 5 5 6 ­0 . 0 48 9 ­ 0 .0 5 8 0 ­0 .0 62 9 ­ 0 .0 4 3 2 ­0 .0 59 2 ­ 0 .0 5 7 6 ­ 0 .0 4 9 5 ­0 .0 6 7 6 ­0 . 04 4 7 ­0 . 05 9 6

­ 0 .0 5 7 6 ­ 0 .0 5 2 2 ­0 . 0 45 9 ­ 0 .0 6 1 3 ­0 .0 66 2 ­ 0 .0 4 2 7 ­0 .0 58 8 ­ 0 .0 5 7 7 ­ 0 .0 4 9 8 ­0 .0 6 6 4 ­0 . 04 1 8 ­0 . 05 9 5

­ 0 .0 5 7 6 ­ 0 .0 5 5 3 ­0 . 0 45 5 ­ 0 .0 5 9 5 ­0 .0 65 0 ­ 0 .0 4 3 2 ­0 .0 58 7 ­ 0 .0 5 7 8 ­ 0 .0 4 9 6 ­0 .0 7 0 1 ­0 . 04 2 2 ­0 . 06 0 1

­ 0 .0 5 8 1 ­ 0 .0 5 5 7 ­0 . 0 47 0 ­ 0 .0 6 0 3 ­0 .0 67 9 ­ 0 .0 4 3 9 ­0 .0 58 8 ­ 0 .0 5 7 8 ­ 0 .0 5 0 3 ­0 .0 6 7 5 ­0 . 04 6 0 ­0 . 05 9 9

­ 0 .0 5 8 0 ­ 0 .0 5 5 9 ­0 . 0 50 4 ­ 0 .0 6 1 9 ­0 .0 63 2 ­ 0 .0 4 3 8 ­0 .0 58 8 ­ 0 .0 5 7 7 ­ 0 .0 5 1 4 ­0 .0 6 4 5 ­0 . 03 7 2 ­0 . 06 0 0

­ 0 .0 5 7 9 ­ 0 .0 5 5 6 ­0 . 0 52 1 ­ 0 .0 6 4 1 ­0 .0 64 2 ­ 0 .0 4 3 9 ­0 .0 59 0 ­ 0 .0 5 7 7 ­ 0 .0 5 0 6 ­0 .0 6 6 8 ­0 . 03 6 5 ­0 . 06 0 4

­ 0 .0 5 7 3 ­ 0 .0 5 3 2 ­0 . 0 52 6 ­ 0 .0 5 9 4 ­0 .0 66 5 ­ 0 .0 4 2 9 ­0 .0 59 3 ­ 0 .0 5 6 9 ­ 0 .0 5 0 4 ­0 .0 6 2 2 ­0 . 03 5 9 ­0 . 06 0 7

­ 0 .0 5 6 7 ­ 0 .0 5 1 9 ­0 . 0 51 7 ­ 0 .0 5 8 4 ­0 .0 63 5 ­ 0 .0 4 2 9 ­0 .0 59 1 ­ 0 .0 5 6 9 ­ 0 .0 5 1 0 ­0 .0 6 7 5 ­0 . 03 6 2 ­0 . 06 0 3

­ 0 .0 5 7 0 ­ 0 .0 5 3 1 ­0 . 0 50 0 ­ 0 .0 5 8 2 ­0 .0 66 6 ­ 0 .0 4 3 5 ­0 .0 59 3 ­ 0 .0 5 6 9 ­ 0 .0 5 0 9 ­0 .0 6 8 9 ­0 . 03 6 0 ­0 . 06 0 9

­ 0 .0 5 7 2 ­ 0 .0 5 2 6 ­0 . 0 47 5 ­ 0 .0 6 2 4 ­0 .0 67 6 ­ 0 .0 4 4 1 ­0 .0 59 1 ­ 0 .0 5 6 5 ­ 0 .0 5 1 3 ­0 .0 6 7 5 ­0 . 03 6 6 ­0 . 06 1 1

Hourly Average Elasticity. 2011
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I Quarter II Quarter III Qaurter IV Quarter

Peak ­0.0778 ­0.0677 ­0.0882 ­0.0591

Off­Peak ­0.0533 ­0.0562 ­0.0556 ­0.0558

Average Elasticity
2011

Peak/Off-Peak Average Elasticity by Quarter. 2011.

Estimates, aggregated by zone segmentation, confirm the results derived
in the previous chapter. During Peak hours, higher elasticities has infact
been recorded when the single market occurred. When the transmission con-
straints are violated, elasticity becomes lower and this is particular evident
during the peak hours. As we said before, high levels of expenditure availabil-
ity affect demand elasticity reducing the responsiveness to change in price.
Moreover, frequent congestions during peak hour may suggest that electricity
is an essential commodity whose demand is stiff and whose consumption can
not be postponed.
Off-peak estimates instead, do not show a well defined behaviour, partic-

ularly in the first semester; in the second semester instead elasticitity records
its highest average value when there was maximum segmentation.

January February March April May June July August September October November December Year

­0.0667 ­0.0622 ­0.0678 ­0.0640 ­0.0755 ­0.0463 ­0.0550 ­0.0666 ­0.0941 ­0.0626 ­0.0500 ­0.0598 ­0.0642

Average Elasticity

Monthly Average Elasticities. 2011.

Average Peak Off­Peak Average Peak Off­Peak

5 0 0 0 0 0 0

4 ­0.062 ­0.068 ­0.056 ­0.061 ­0.057 ­0.065

3 ­0.060 ­0.067 ­0.053 ­0.067 ­0.076 ­0.058

2 ­0.063 ­0.069 ­0.056 ­0.065 ­0.071 ­0.059

1 ­0.062 ­0.070 ­0.054 ­0.062 ­0.070 ­0.055

2011­First Semester 2011­Second Semester
Zone

Average Elasticity by Zone Segmentation. 2011.
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Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 5 ­0.077 11 ­0.061 4 ­0.091 1 ­0.065 16 ­0.079 17 ­0.035

3 91 ­0.077 146 ­0.061 125 ­0.085 110 ­0.067 107 ­0.084 133 ­0.029

2 269 ­0.075 178 ­0.060 226 ­0.088 215 ­0.068 225 ­0.088 205 ­0.034

1 7 ­0.077 1 ­0.059 17 ­0.090 34 ­0.071 24 ­0.081 5 ­0.043

JuneJanuary February March April May

Peak Average Elasticity by Zone Segmentation. Jan-Jun. 2011.

Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 22 ­0.065 0 . 10 ­0.047 7 ­0.056 1 ­0.061 2 ­0.054

3 152 ­0.060 52 ­0.067 221 ­0.147 146 ­0.060 163 ­0.061 137 ­0.060

2 196 ­0.062 311 ­0.060 124 ­0.132 202 ­0.056 156 ­0.060 202 ­0.059

1 2 ­0.076 9 ­0.088 5 ­0.074 17 ­0.064 40 ­0.059 31 ­0.057

July August September October November December

Peak Average Elasticity by Zone Segmentation. Jul-Dec. 2011.

Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 7 ­0.055 10 ­0.048 3 ­0.070 8 ­0.058 15 ­0.067 18 ­0.040

3 117 ­0.057 73 ­0.052 105 ­0.053 152 ­0.060 162 ­0.061 123 ­0.035

2 121 ­0.057 135 ­0.057 122 ­0.042 120 ­0.061 165 ­0.070 157 ­0.051

1 127 ­0.058 118 ­0.053 141 ­0.050 80 ­0.060 30 ­0.061 62 ­0.043

January February March April May June

Off-Peak Average Elasticity by Zone Segmentation.Jan-Jun. 2011.
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Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av. Elast. Freq. Av Elast.

5 0 . 0 . 0 . 0 . 0 . 0 .

4 25 ­0.057 5 ­0.079 7 ­0.059 7 ­0.067 1 ­0.079 4 ­0.048

3 193 ­0.058 162 ­0.057 172 ­0.054 93 ­0.066 94 ­0.057 67 ­0.052

2 109 ­0.060 128 ­0.060 99 ­0.047 155 ­0.069 127 ­0.060 153 ­0.057

1 45 ­0.062 77 ­0.051 82 ­0.046 117 ­0.067 138 ­0.051 148 ­0.053

July August September October November December

Off-Peak Average Elasticity by Zone Segmentation.Jul-Dec. 2011.

Elasticities aggregated by PUN percentiles show an opposite behaviour
compared to their corresponding homoskedastic estimates. They are higher
when higher levels of equilibrium price have been recorded. Since elasticities
are higher during the peak periods when higher levels of equilibrium price are
recorded, the aggregation by PUN percentile expresses this buyers’behaviour
recording higher values when the equilibrium price are higher.

Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak
10 ­0.0703 . ­0.0710 . ­0.0858 ­0.0723 ­0.0656 ­0.0438 ­0.0832 ­0.0742 ­0.0520 ­0.0574
9 ­0.0738 . ­0.0694 ­0.0374 ­0.0861 ­0.0502 ­0.0695 ­0.0664 ­0.0878 ­0.0587 ­0.0518 ­0.0439
8 ­0.0742 ­0.0692 ­0.0708 ­0.0630 ­0.0854 ­0.0406 ­0.0709 ­0.0613 ­0.0859 ­0.0715 ­0.0497 ­0.0447
7 ­0.0762 ­0.0664 ­0.0685 ­0.0508 ­0.0877 ­0.0597 ­0.0685 ­0.0714 ­0.0883 ­0.0731 ­0.0481 ­0.0447
6 ­0.0796 ­0.0560 ­0.0700 ­0.0512 ­0.0862 ­0.0594 ­0.0646 ­0.0587 ­0.0859 ­0.0682 ­0.0485 ­0.0473
5 ­0.0761 ­0.0542 ­0.0697 ­0.0558 ­0.0880 ­0.0299 ­0.0695 ­0.0600 ­0.0826 ­0.0729 ­0.0514 ­0.0466
4 ­0.0763 ­0.0552 ­0.0704 ­0.0522 ­0.0887 ­0.0430 ­0.0666 ­0.0566 ­0.0836 ­0.0585 ­0.0456 ­0.0404
3 ­0.0718 ­0.0575 ­0.0729 ­0.0565 ­0.0902 ­0.0499 ­0.0670 ­0.0607 ­0.0842 ­0.0633 ­0.0496 ­0.0455
2 ­0.0716 ­0.0613 ­0.0753 ­0.0498 ­0.0892 ­0.0535 ­0.0719 ­0.0619 ­0.0812 ­0.0657 ­0.0457 ­0.0403

1 . ­0.0547 . ­0.0568 . ­0.0478 ­0.0713 ­0.0590 ­0.0799 ­0.0570 ­0.0394 ­0.0435

May
Percentile

January February March April Jun

Monthly Average Elasticity By PUN Percentile. Jan-Jun. 2011.
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Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak
10 ­0.0505 ­0.0648 ­0.0840 ­0.0480 ­0.1652 ­0.0498 ­0.0577 ­0.0715 ­0.0609 ­0.0384 ­0.0620 ­0.0618
9 ­0.0531 ­0.0685 ­0.0840 ­0.0612 ­0.1211 ­0.0501 ­0.0570 ­0.0614 ­0.0608 ­0.0449 ­0.0600 ­0.0620
8 ­0.0490 ­0.0604 ­0.0721 ­0.0588 ­0.1273 ­0.0552 ­0.0586 ­0.0766 ­0.0589 ­0.0305 ­0.0536 ­0.0583
7 ­0.0522 ­0.0578 ­0.0749 ­0.0565 ­0.1157 ­0.0483 ­0.0574 ­0.0651 ­0.0608 ­0.0470 ­0.0481 ­0.0612
6 ­0.0513 ­0.0613 ­0.0732 ­0.0533 ­0.0808 ­0.0443 ­0.0571 ­0.0696 ­0.0588 ­0.0412 ­0.0630 ­0.0566
5 ­0.0511 ­0.0654 ­0.0736 ­0.0563 ­0.1743 ­0.0480 ­0.0601 ­0.0668 ­0.0585 ­0.0426 ­0.0641 ­0.0644
4 ­0.0494 ­0.0603 ­0.0715 ­0.0618 ­0.1503 ­0.0507 ­0.0593 ­0.0638 ­0.0621 ­0.0385 ­0.0636 ­0.0699
3 ­0.0516 ­0.0581 ­0.0777 ­0.0556 ­0.1614 ­0.0511 ­0.0564 ­0.0562 ­0.0617 ­0.0517 ­0.0633 ­0.0663
2 ­0.0468 ­0.0605 ­0.0668 ­0.0636 ­0.1293 ­0.0564 ­0.0612 ­0.0666 ­0.0632 ­0.0434 ­0.0917 ­0.0533

1 ­0.0552 ­0.0526 ­0.0692 ­0.0599 . ­0.0541 ­0.0630 ­0.0759 ­0.0640 ­0.0299 . ­0.0608

August September October November December
Percentile

July

Monthly Average Elasticity By PUN Percentile. Jul-Dec. 2011.

Min. Max.
Peak Off­Peak Peak Off­Peak Peak Off­Peak Peak Off­Peak

10 ­0.084 ­0.056 0.060 0.024 ­0.309 ­0.099 ­0.002 0.000
9 ­0.078 ­0.057 0.049 0.024 ­0.298 ­0.119 ­0.001 ­0.001
8 ­0.078 ­0.056 0.045 0.024 ­0.282 ­0.124 ­0.001 0.000
7 ­0.073 ­0.057 0.037 0.024 ­0.252 ­0.129 0.000 0.000
6 ­0.070 ­0.054 0.032 0.026 ­0.291 ­0.127 0.000 0.000
5 ­0.070 ­0.055 0.027 0.027 ­0.292 ­0.126 ­0.005 0.000
4 ­0.068 ­0.059 0.021 0.024 ­0.217 ­0.132 ­0.001 ­0.002
3 ­0.070 ­0.053 0.022 0.025 ­0.262 ­0.125 ­0.012 ­0.001
2 ­0.072 ­0.052 0.019 0.027 ­0.216 ­0.130 ­0.010 0.000
1 ­0.070 ­0.054 0.023 0.028 ­0.224 ­0.131 ­0.010 0.000

Percentile
Mean Stand. Dev

Average Elasticity by Pun Percentiles. 2011



Chapter 6

Conclusion

This thesis tried to explain buyers’behaviour of Italian Wholesale Electricity
Market through Bayesian method.
The first two chapters explain the reason of preferring the Bayesian method

rather than the classical frequentist method and enlighten the main elements
of Bayesian model.
The third chapter outlines the main features of the Italian Electricity

Market after the deregulation process. Given the strategic relevance of elec-
tricity sector, the liberalization had been a challenging process which had
to face two main issues. First, market structure had been defined in order
to guide investments to enhance the trasmission grid or for more flexible
and effi cient generation plants. Secondly, market structure has to ensure the
constant covering of demand profiles in an effi cient and competitive way.
After giving summary statistics related to the main features of Italian

Electricit market, the last two chapters provide two statistical models applied
to derived electricity demand elaticity. The first model is a Seemingly Unre-
lated Regression equations where the hourly demand equations are supposed
to be correlated within the peak/off-peak group of hours. In the Second
model instead, I allowed the demand equations within the group of hours
to differ in their variance covariance matrixes, introducing in this way Het-
eroskedasticity. Both the homoskedastic and heteroskedastic model highlight
that buyers in the Italian Wholesale Electricity Market react to change in
price since the estimated elasticities are different from zero.
Moreover, the estimates differ from one another during the day, on the

strenght of the level of electricity loads, the market segmentation structure
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and the levels of PUN.
In the Homoskedastic Multivariate Linear Model, during the 2011, hourly

elasticities were higher during the off-peak hours, when there was maximum
segmentation of the market and lower levels of PUN. For the first semester of
the 2012 instead, elasticity was higher during peak hours, but its behaviour
did not change with respect to the market segmentation and the PUN level.
In the Heteroskedastic Multivariate Linear Model, the elasticities recorded

during peak hours became higher than Off-Peak estimates. Moreover, as in
the Homoskedastic model, buyers mantain their higher reactivity to changes
in price when there is not congestion (particularly during the peak period)
and when PUN records high values.
Further development of the research may be the application of the Het-

eroskedastic model to the data referring the 2012. Moreover, also the com-
putational part can be implemented. Heteroskedastic model represents a
novel in the empirical analyses, but the multi-dimension of the inferential
problem made the construction of the algorithm the most challenging task of
my thesis. The heteroskedastic model designs for empirical data a statisti-
cal framework rigorous and detailed. However, posterior simulation requires
the discretional choice of the proposal density and the tuning of its para-
meters, first of all the variance, affecting the behaviour of the chain and
the resulting posterior. Running the procedure with other parameters and
alternative functional forms of the candidate generating density could be a
possible development in order to make a comparison between the different
derived estimates.



Appendix

A.1 Stationarity of Gibbs
Sampling Algorithm

Let be θ the p-vector of parameters. A Markov Chain used for Monte Carlo
simulation has to converge to the target distribution we want to simulate,
such that pt+1 = p = pt. Recalling the formula 2.10 in Chapter 2, the Gibbs
sampling Algorithm will converge to the posterior distribution if there exists
a solution a Markov Chain whose kernel satisfies the integral equation:

p(θ′) =

∫
Θ

p(θ)K(θ, θ′)dθ

Gibbs sampler partitions the parameter vector θ in (θ(1), θ(2), ....θ(B))
where θ(j) for j = 1, 2, ...B is a scalar or vector and B is the number of
partitions.

Let demonstrate stationarity condition in the usual case in which B = 2.
The transition kernel of Gibbs Sampler uses the full conditional distribution:
p(θ(1)|θ(2), y) and p(θ(2)|θ(1), y) such that:

K(θt, θt+1) = p(θt+1
(1) |θ

t
(2), y) p(θt+1

(2) |θ
t+1
(1) , y)

Let demonstrate that kernel satisfies the integral equation in (2.8):
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∫
K(θt, θt+1|y)p(θ|y)dθ =

∫
p(θt+1

(1) |θ
t
(2), y) p(θt+1

(2) |θ
t+1
(1) , y) p(θt(1), θ

t
(2)|y) dθt(1)dθ

t
(2)

=

∫
p(θt+1

(1) |θ
t
(2), y) p(θt+1

(2) |θ
t+1
(1) , y) p(θt(2)|y) dθt(2)

= p(θt+1
(2) |θ

t+1
(1) , y)

∫
p(θt+1

(1) |θ
t
(2), y) p(θt(2)|y) dθt(2)

= p(θt+1
(2) |θ

t+1
(1) , y)

∫
p(θt+1

(1) , θ
t
(2), y) dθt(2)

= p(θt+1
(2) |θ

t+1
(1) , y) p(θt+1

(1) , y) = p(θt+1
(2) , θ

t+1
(1) , y)

= p(θt+1|y)



Appendix

A.2 Stationarity of Metropolis
Algorithm

First suppose that the the transition kernel of Metropolis Algorithm satifies
the condition called detailed balance condition:

K(θ, θ′)p(θ) = K(θ′, θ)p(θ′)

for all θ and θ ∈ Θ. Then p is the stationary distribution of the chain.
Consider now θ′ belong to any set B ⊂ Θ and note:

∫
Θ

K(θ, B)p(θ)dθ =

∫
Θ

∫
B

K(θ′, θ) p(θ′|θ) dθ′ dθ,

by the detailed balance condition

=

∫
Θ

∫
B

K(θ, θ′) p(θ|θ′) dθ′ dθ,

=

∫
B

p(θ|θ′) dθ

because
∫

Θ
K(θ, θ′)dθ′ = 1. Thus p(·) is a stationary distribution of the

chain.
It only remains to show that the Metropolis kernel satisfies detailed the

balance condition. To see this, note that the transition kernel of Metropolis
Algorithm can be written as:
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K(θ, θ′) = ρ(θ, θ′)q(θ′|θ) + (1− r(θ))δθ(θ′)
where δθ(θ

′) is the Dirac delta function equal to one if θ′ = θ and zero
otherwise. Here,

ρ(θ, θ′) = min

(
p(θ′)

p(θ)
, 1

)
and

r(θ) =

∫
ρ(θ, θ′)q(θ′|θ)dθ′

The explanation of transition kernel is that q(θ′|θ) is the probability that
θ′ is produced and ρ(θ′|θ) is the chance that it will be accepted so the first
term of the sum is the probability that Θ = θ is produced and accepted. r(θ)
is the sum of these probability over θ′ and so is the chance that the produced
θ′ is accepted. It follows that the final terms (1−r(θ) is the probability that θ′
is produced and not accepted so the chain remains in θ. Finally, multiplying
K(θ, θ′) by p(θ′) it is straightforward to verify that the Metropolis kernel
satisfies the detailed balance conditon and thus it has p(·) as its stationary
distribution.
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